Skip to main content
Log in

Modeling the mechanics of fibrous-porous scaffolds for skeletal muscle regeneration

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The scaffolds for skeletal muscle regeneration are designed to mimic the structure, stiffness, and strains applied to the muscle under physiologic conditions. The external strains are also used to stimulate myogenesis of the (stem) cells seeded on the scaffold. The time- and location-dependent mechanics inside the scaffold determine the microenvironment for the seeded cells. Here, fibrous-porous cylindrical scaffolds under the action of external cyclic strains are considered. The scaffold mechanics are described as two-phase (poroelastic) where the solid phase is associated with the fibers and the fluid phase is associated with the liquid-containing pores. In response to an applied cyclic strain, pressure oscillates and fluid moves radially toward and away from the axis of the scaffold. We compute the directions and magnitudes of the radial gradients of the poroelastic characteristics (solid-phase displacement, strain, and velocity; fluid-phase pressure and velocity; relative fluid-solid-phase velocity) determined by the boundary conditions and geometry of the scaffold. Several kinds of the external cyclic strain are analyzed and the resulting poroelastic functions are found. The poroelastic characteristics are obtained in closed form which is convenient for further consideration of myogenesis of the seeded cells and ultimately for the design of the scaffolds for skeletal muscle regeneration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armstrong CG, Lai WM, Mow VC (1984) An analysis of the unconfined compression of articular cartilage. J Biomech Eng 106:165–173. https://doi.org/10.1115/1.3138475

    Article  CAS  PubMed  Google Scholar 

  2. Ma P. (Ed.) (2014) Biomaterials and regenerative medicine. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511997839

  3. Cameron AR, Frith JE, Cooper-White JJ (2011) The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32:5979–5993. https://doi.org/10.1016/j.biomaterials.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  4. Cameron AR, Frith JE, Gomez GA, Yap AS, Cooper-White JJ (2014) The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 35:1857–1868. https://doi.org/10.1016/j.biomaterials.2013.11.023

    Article  CAS  PubMed  Google Scholar 

  5. Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee HP, Lippens E, Duda GN, Mooney DJ (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–334. https://doi.org/10.1038/nmat4489

    Article  CAS  PubMed  Google Scholar 

  6. Checa S, Prendergast PJ (2009) A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Eng 37:129–145. https://doi.org/10.1007/s10439-008-9594-9

    Article  PubMed  Google Scholar 

  7. Cook CA, Huri PY, Ginn BP, Gilbert-Honick J, Somers SM, Temple JP, Mao HQ, Grayson WL (2016) Characterization of a novel bioreactor system for 3D cellular mechanobiology studies. Biotechnol Bioeng 113:1825–1837. https://doi.org/10.1002/bit.25946

    Article  CAS  PubMed  Google Scholar 

  8. Cowin SC (1999) Bone poroelasticity. J Biomech 32:217–238. https://doi.org/10.1016/s0021-9290(98)00161-4

    Article  CAS  PubMed  Google Scholar 

  9. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  10. Jones RM (1998) Mechanics of composite materials, 2nd edn. Taylor & Francis, Abingdon

    Google Scholar 

  11. Kaunas R, Hsu HJ (2009) A kinematic model of stretch-induced stress fiber turnover and reorientation. J Theor Biol 257:320–330. https://doi.org/10.1016/j.jtbi.2008.11.024

    Article  PubMed  Google Scholar 

  12. Lai WM, Mow VC (1980) Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17:111–123. https://doi.org/10.3233/bir-1980-171-213

    Article  CAS  PubMed  Google Scholar 

  13. Loerakker S, Obbink-Huizer C, Baaijens FP (2014) A physically motivated constitutive model for cell-mediated compaction and collagen remodeling in soft tissues. Biomech Model Mechanobiol 13:985–1001. https://doi.org/10.1007/s10237-013-0549-1

    Article  PubMed  Google Scholar 

  14. Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102:73–84. https://doi.org/10.1115/1.3138202

    Article  CAS  PubMed  Google Scholar 

  15. Schiff JL (1999) The Laplace transform: theory and applications. Springer, New York

    Book  Google Scholar 

  16. Schneck DJ (1992) Mechanics of muscle. New York University Press, New York

    Google Scholar 

  17. Soltz MA, Ateshian GA (2000) A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J Biomech Eng 122:576–586. https://doi.org/10.1115/1.1324669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Somers SM, Zhang NY, Morrissette-McAlmon JBF, Tran K, Mao HQ, Grayson WL (2019) Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes. Acta Biomater 94:232–242. https://doi.org/10.1016/j.actbio.2019.06.024

    Article  PubMed  Google Scholar 

  19. Spector AA, Yuan D, Somers S, Grayson WL (2018) Biomechanics of stem cells. J Phys Conf Ser 991:012074. https://doi.org/10.1088/1742-6596/991/1/012074

    Article  CAS  Google Scholar 

  20. Tse JR, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 6:e15978. https://doi.org/10.1371/journal.pone.0015978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei Z, Deshpande VS, McMeeking RM, Evans AG (2008) Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. J Biomech Eng 130:031009. https://doi.org/10.1115/1.2907745

    Article  PubMed  Google Scholar 

  22. Yang M, Taber LA (1991) The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle. J Biomech 24:587–597. https://doi.org/10.1016/0021-9290(91)90291-t

    Article  CAS  PubMed  Google Scholar 

  23. Yuan D, Somers SM, Grayson WL, Spector AA (2018) A poroelastic model of a fibrous-porous tissue engineering scaffold. Sci Rep 8:5043. https://doi.org/10.1038/s41598-018-23214-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang S, Liu X, Barreto-Ortiz SF, Yu Y, Ginn BP, DeSantis NA, Hutton DL, Grayson WL, Cui FZ, Korgel BA, Gerecht S, Mao HQ (2014) Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching. Biomaterials 35:3243–3251. https://doi.org/10.1016/j.biomaterials.2013.12.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yerrabelli RS, Spector AA (2020) Yerrabelli-Spector-Poroelastic-Model-Code. Zenodo 1:2. https://doi.org/10.5281/zenodo.4284726

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Spector.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we obtain the Laplace transforms of the major poroelastic functions. Rewriting the continuity equation in the coordinate form, we have

$$ \left(\frac{\partial {v}_r^f}{\partial r}+\frac{v_r^f}{r}+\frac{\partial {v}_z^f}{\partial z}\right)+\left({\varnothing}^{-1}-1\right)\frac{\partial }{\partial t}\left(\frac{{\partial u}_r}{\partial r}+\frac{u_r}{r}+\varepsilon \right)=0 $$
(41)

We consider Eq. (41) as an ODE in terms of the radial component of the fluid-phase velocity, \( {v}_r^f(r) \), and integrate it assuming velocity is finite at r = 0. As a result, the fluid-phase velocity can be expressed in terms of the solid-phase displacement as

$$ {v}_r^f=-\left({\varnothing}^{-1}-1\right)\frac{\partial {u}_r}{\partial t}-{\varnothing}^{-1}\frac{r}{2}\frac{\partial \varepsilon }{\partial t} $$
(42)

We can also express the fluid-phase pressure via the solid-phase displacement. For that, we consider equilibrium Eq. (2) and substitute the fluid-phase stress and fluid-phase velocity in terms of the fluid-phase pressure (2) and solid-phase displacement (42), respectively. Finally, we reduce the problem to the following differential equation in terms of the solid-phase displacement.

We can also express fluid-phase pressure via the solid-phase displacement. For that, we consider the fluid-phase equilibrium Eq. (2) and substitute the fluid-phase stress in terms of fluid-phase pressure (2) and the fluid-phase velocity in terms of the solid-phase displacement (42). Finally, we reduce the problem to a differential equation in terms of the solid-phase displacement. To derive this differential equation, we substitute the fluid-phase velocity and pressure into the solid-phase equilibrium Eq. (6), which results in the following equation:

$$ \frac{\partial^2{u}_r}{\partial {r}^2}+\frac{1}{r}\frac{\partial {u}_r}{\partial r}-\frac{u_r}{r^2}=\frac{1}{C_{11}k}\frac{\partial }{\mathrm{\partial t}}\left({u}_r+\frac{r}{2}\varepsilon \right) $$
(43)

Then, we apply the Laplace transform using dimensionless time t = t/tg to Eq. (43) and obtain

$$ \frac{\partial^2{\overline{{\mathrm{u}}^{\prime}}}_{\mathrm{r}}}{\partial {{\mathrm{r}}^{\prime}}^2}+\frac{1}{{\mathrm{r}}^{\prime }}\frac{\partial {\overline{{\mathrm{u}}^{\prime}}}_{\mathrm{r}}}{\partial {\mathrm{r}}^{\prime }}-\left(\frac{1}{{{\mathrm{r}}^{\prime}}^2}+\mathrm{s}\right){\overline{\mathrm{u}}}_{\mathrm{r}}=\mathrm{s}\frac{{\mathrm{r}}^{\prime }}{2}\overline{\upvarepsilon} $$
(44)

where \( \overline{\mathrm{X}} \) indicates the Laplace transform of any function X(t) with the parameter s, and ′ indicates the division by the scaffold radius, a. On the external surface of the cylinder, the stresses satisfy the following conditions:

$$ {\sigma}_{rr}^t={\sigma}_{rr}^s+{\sigma}_{rr}^f=p=0 $$
(45)

which can be used as the following boundary (at r = a) condition for Eq. (44).

$$ {C}_{11}\frac{\partial {{\overline{u}}^{\prime}}_r}{\partial {r}^{\prime }}+{C}_{12}\frac{{{\overline{u}}^{\prime}}_r}{r^{\prime }}+{C}_{13}\overline{\varepsilon}=0 $$
(46)

The solution of differential Eq. (44) with boundary condition (45) takes the form

$$ {{\overline{u}}^{\prime}}_r=-\overline{\varepsilon}\frac{r^{\prime }}{2}\left[1-\frac{\left({C}_{11}+{C}_{12}-2{C}_{13}\right){I}_1\left(\sqrt{s}{r}^{\prime}\right)\cdotp \frac{1}{\sqrt{s}{r}^{\prime }}}{C_{11}{I}_0\left(\sqrt{s}\right)-\frac{\left({C}_{11}-{C}_{12}\right){I}_1\left(\sqrt{s}\right)}{\sqrt{s}}}\right] $$
(47)

where I1 and I0 are the modified Bessel functions of the first kind.

We now use Eq. (9) to obtain the expression for the Laplace transform of the fluid-phase velocity. From Eq. (9), we have

$$ {\overline{{\mathrm{v}}^{\prime}}}^{\mathrm{f}}=-\mathrm{s}\left[\left({\varnothing}^{-1}-1\right){\overline{{\mathrm{u}}^{\prime}}}_{\mathrm{r}}+0.5{\mathrm{r}}^{\prime }{\varnothing}^{-1}\overline{\upvarepsilon}\left(\mathrm{s}\right)\right] $$
(48)

which results in the following equation

$$ {{\overline{v}}^{\prime}}^f=-s\cdotp \overline{\varepsilon}(s)\cdotp \frac{r^{\prime }}{2}\left[1+\left({\varnothing}^{-1}-1\right)\cdotp \frac{\left({C}_{11}+{C}_{12}-2{C}_{13}\right){I}_1\left(\sqrt{s}{r}^{\prime}\right)\cdotp \frac{1}{\sqrt{s}{r}^{\prime }}}{C_{11}{I}_0\left(\sqrt{s\ }\right)-\frac{\left({C}_{11}-{C}_{12}\right){I}_1\left(\sqrt{s}\right)}{\sqrt{s}}}\right] $$
(49)

Here the fluid-phase velocity is made dimensionless by dividing by a/tg. Finally, the Laplace transform of the fluid-phase pressure is given by the following equation:

$$ {\overline{p}}^{\prime }=\frac{C_{11}\left({C}_{11}+{C}_{12}-2{C}_{13}\right)}{\left({C}_{11}-{C}_{12}\right)}\cdotp \frac{I_0\left(\sqrt{s}{r}^{\prime}\right)-{I}_0\left(\sqrt{s}\right)}{C_{11}{I}_0\left(\sqrt{s}\right)-\frac{\left({C}_{11}-{C}_{12}\right){I}_1\left(\sqrt{s}\right)}{\sqrt{s}}}\overline{\varepsilon}(s) $$
(50)

where pressure is made dimensionless by dividing by 0.5 (C11 − C12).

Equations 47, 49, and 50 include function\( \overline{\ \upvarepsilon} \), the Laplace transform of the externally applied strain, which for all of our cases of non-harmonic cyclic strain is given by the following sets of equations:

$$ \varepsilon (t)={\sum}_i{\varepsilon}_R\left(t-{\tau}_i^{+}\right)-\sum \limits_i{\varepsilon}_R\left(t-{\tau}_i^{-}\right) $$
(51)
$$ \overline{\varepsilon}(s)={\sum}_i\overline{\varepsilon_R}\left(s,{\tau}_i^{+}\right)-\sum \limits_i\overline{\varepsilon_R}\left(s,{\tau}_i^{-}\right) $$
(52)

where

$$ {\varepsilon}_R\left(t-{\tau}_i^{+}\right)=\left(t-{\tau}_i^{+}\right)H\left(t-{\tau}_i^{+}\right)-\left(t-{t}_0-{\tau}_i^{+}\right)H\left(t-{t}_0-{\tau}_i^{+}\right) $$
(53)
$$ {\varepsilon}_R\left(t-{\tau}_i^{-}\right)=\left(t-{\tau}_i^{-}\right)H\left(t-{\tau}_i^{-}\right)-\left(t-{t}_0-{\tau}_i^{-}\right)H\left(t-{t}_0-{\tau}_i^{-}\right) $$
(54)
$$ \overline{\varepsilon_R}\left(s,{\tau}_i^{+}\right)={e}^{-{\tau}_i^{+}s}\left(1-{e}^{-{t}_0s}\right)/{s}^2 $$
(55)
$$ \overline{\varepsilon_R}\left(s,{\tau}_i^{-}\right)={e}^{-{\tau}_i^{-}s}\left(1-{e}^{-{t}_0s}\right)/{s}^2 $$
(56)

Here, H(t) is the Heaviside step function. Thus, each \( {\varepsilon}_R\left(t-{\tau}_i^{+}\right) \) is a function that equals 0 before time \( {\tau}_i^{+} \), equals 1 after time \( {\tau}_i^{+}+{t}_0 \), and is a constantly increasing ramp in between those times, and likewise for \( {\varepsilon}_R\left(t-{\tau}_i^{-}\right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yerrabelli, R.S., Somers, S.M., Grayson, W.L. et al. Modeling the mechanics of fibrous-porous scaffolds for skeletal muscle regeneration. Med Biol Eng Comput 59, 131–142 (2021). https://doi.org/10.1007/s11517-020-02288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02288-5

Keywords

Navigation