Skip to main content
Log in

Comparison of short-term heart rate variability indexes evaluated through electrocardiographic and continuous blood pressure monitoring

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Heart rate variability (HRV) analysis represents an important tool for the characterization of complex cardiovascular control. HRV indexes are usually calculated from electrocardiographic (ECG) recordings after measuring the time duration between consecutive R peaks, and this is considered the gold standard. An alternative method consists of assessing the pulse rate variability (PRV) from signals acquired through photoplethysmography, a technique also employed for the continuous noninvasive monitoring of blood pressure. In this work, we carry out a thorough analysis and comparison of short-term variability indexes computed from HRV time series obtained from the ECG and from PRV time series obtained from continuous blood pressure (CBP) signals, in order to evaluate the reliability of using CBP-based recordings in place of standard ECG tracks. The analysis has been carried out on short time series (300 beats) of HRV and PRV in 76 subjects studied in different conditions: resting in the supine position, postural stress during 45° head-up tilt, and mental stress during computation of arithmetic test. Nine different indexes have been taken into account, computed in the time domain (mean, variance, root mean square of the successive differences), frequency domain (low-to-high frequency power ratio LF/HF, HF spectral power, and central frequency), and information domain (entropy, conditional entropy, self entropy). Thorough validation has been performed using comparison of the HRV and PRV distributions, robust linear regression, and Bland–Altman plots. Results demonstrate the feasibility of extracting HRV indexes from CBP-based data, showing an overall relatively good agreement of time-, frequency-, and information-domain measures. The agreement decreased during postural and mental arithmetic stress, especially with regard to band-power ratio, conditional, and self-entropy. This finding suggests to use caution in adopting PRV as a surrogate of HRV during stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shaffer F, Ginsberg JP (2017) An overview of heart rate variability metrics and norms. Front Public Health 5(258):1–17

    Google Scholar 

  2. Rajendra Acharya U, Paul Joseph K, Kannathal N, Min Lim C, Suri JS (2007) Heart rate variability: a review. Med Bio Eng Comput 44(12):1031–1051

    Article  Google Scholar 

  3. Javorka M, Krohova J, Czippelova B, Turianikova Z, Lazarova Z, Wiszt R, Faes L (2018) Towards understanding the complexity of cardiovascular oscillations: insights from information theory. Comput Biol Med 98:48–57

    Article  PubMed  Google Scholar 

  4. Porta A, Di Rienzo M, Wessel N, Kurths J (2009) Addressing the complexity of cardiovascular regulation. Phil Trans A Math Phys Eng Sci 367:1215–1218

    Article  Google Scholar 

  5. Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL, Peng CK (2007) Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. Europhys Lett 77(6):68008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Malik M, Bigger J, Camm A, Kleiger R (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17:354–381

    Article  Google Scholar 

  7. Porta A, De Maria B, Bari V, Marchi A, Faes L (2017) Are nonlinear model-free approaches for the assessment of the entropy-based complexity of the cardiac control superior to a linear model-based one? IEEE Trans Biomed Eng 64(6):1287–1296

    Article  PubMed  Google Scholar 

  8. Taelman J, Vandeput S, Vlemincx E, Spaepen A, Van Huffel S (2011) Instantaneous changes in heart rate regulation due to mental load in simulated office work. Eur J Appl Physiol 111(7):1497–1505

    Article  PubMed  Google Scholar 

  9. Akselrod S, Gordon D, Ubel F, Shannon D, Berger A, Cohen R (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science (80-.) 213(4504):220–222

    Article  CAS  Google Scholar 

  10. Porta A, Guzzetti S, Furlan R, Gnecchi-Ruscone T, Montano N, Malliani A (2007b) Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE Trans Biomed Eng 54(1):94–106

    Article  PubMed  Google Scholar 

  11. Valente M, Javorka M, Porta A, Bari V, Krohova J, Czippelova B, Turianikova Z, Nollo G, Faes L (2018) Univariate and multivariate conditional entropy measures for the characterization of short-term cardiovascular complexity under physiological stress. Physiol Meas 39(1):014002

    Article  CAS  PubMed  Google Scholar 

  12. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049

    Article  CAS  PubMed  Google Scholar 

  13. Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N (2007a) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol 103(4):1143–1149

    Article  PubMed  Google Scholar 

  14. Porta A, Baselli G, Liberati D, Montano N, Cogliati C, Gnecchi-Ruscone T, Malliani A, Cerutti S (1998) Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol Cybern 78(1):71–78

    Article  CAS  PubMed  Google Scholar 

  15. Wibral M, Lizier JT, Priesemann V (2015) Bits from brains for biologically inspired computing. Front robot AI 2:5

    Article  Google Scholar 

  16. Sun Y, Thakor N (2016) Photoplethysmography revisited: from contact to noncontact, from point to imaging. IEEE Trans Biomed Eng 63(3):463–477

    Article  PubMed  Google Scholar 

  17. Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28(3):R1–R39

    Article  PubMed  Google Scholar 

  18. Agrò D, Canicattì R, Tomasino A, Giordano A, Adamo G, Parisi A, Pernice R, Stivala S, Giaconia C, Busacca AC, Ferla G (2014) PPG embedded system for blood pressure monitoring. Proc of 2014 AEIT Int Ann Conf, Trieste, Italy, pp 1–6

  19. Oreggia D, Guarino S, Parisi A, Pernice R, Adamo G, Mistretta L, Di Buono P, Fallica G, Ferla G, Cino AC, Giaconia C, Busacca AC (2015) Physiological parameters measurements in a cardiac cycle via a combo PPG-ECG system. Proc of 2015 AEIT Int Ann Conf, Napoli, Italy, pp 1–6

  20. Siddiqui A, Zhang Y, Feng Z, Kos A (2016) A pulse rate estimation algorithm using PPG and smartphone camera. J Med Syst 40(5):126

    Article  PubMed  Google Scholar 

  21. Bánhalmi A, Borbás J, Fidrich M, Bilicki V, Gingl Z, Rudas L (2018) Analysis of a pulse rate variability measurement using a smartphone camera. J Healthc Eng 2018(4038034):15

    Google Scholar 

  22. Wesseling KH (1996) Finger arterial pressure measurement with Finapres. Z Kardiol 85(Suppl 3):38–44

    PubMed  Google Scholar 

  23. Imholz BPM, Wieling W, Van Montfrans GA, Wesseling KH (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38(3):605–616

    Article  CAS  PubMed  Google Scholar 

  24. Schäfer A, Vagedes J (2013) How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int J Cardiol 166(1):15–29

    Article  PubMed  Google Scholar 

  25. Hayes MJ, Smith PR (1998) Artifact reduction in photoplethysmography. Appl Opt 37(31):7437–7446

    Article  CAS  PubMed  Google Scholar 

  26. Gil E, Orini M, Bailón R, Vergara JM, Mainardi L, Laguna P (2010) Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol Meas 31(9):1271–1290

    Article  CAS  PubMed  Google Scholar 

  27. Lu G, Yang F, Taylor JA, Stein JF (2009) A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J Med Eng Technol 33(8):634–641

    Article  CAS  PubMed  Google Scholar 

  28. Rauh R, Limley R, Bauer RD, Radespiel-Troger M, Mueck-Weymann M (2004) Comparison of heart rate variability and pulse rate variability detected with photoplethysmography. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings Volume 5474, Saratov Fall Meeting 2003: Optical Technologies in Biophysics and Medicine V, pp 115–126

  29. Giardino ND, Lehrer PM, Edelberg R (2002) Comparison of finger plethysmograph to ECG in the measurement of heart rate variability. Psychophysiology 39(2):246–253

    Article  PubMed  Google Scholar 

  30. McKinley PS, Shapiro PA, Bagiella E, Myers MM, De Meersman RE, Grant I, Sloan RP (2003) Deriving heart period variability from blood pressure waveforms. J Appl Physiol 95(4):1431–1438

    Article  PubMed  Google Scholar 

  31. Carrasco S, Gonzalez R, Jimenez J, Roman R, Medina V, Azpiroz J (1998) Comparison of the heart rate variability parameters obtained from the electrocardiogram and the blood pressure wave. J Med Eng Technol 22(5):195–205

    Article  CAS  PubMed  Google Scholar 

  32. Dawson SL, Panerai RB, Potter JF (1998) Should one use electrocardiographic or Finapres-derived pulse intervals for calculation of cardiac baroreceptor sensitivity? Blood Press Monit 3(5):315–320

    CAS  PubMed  Google Scholar 

  33. Suhrbier A, Heringer R, Walther T, Malberg H, Wessel N (2006) Comparison of three methods for beat-to-beat-interval extraction from continuous blood pressure and electrocardiogram with respect to heart rate variability analysis. Biomed Tech (Berl) 51(2):70–76

    Article  Google Scholar 

  34. Lu S, Zhao H, Ju K, Shin K, Lee M, Shelley K, Chon KH (2008) Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? J Clin Monit Comput 22(1):23–29

    Article  PubMed  Google Scholar 

  35. Khandoker AH, Karmakar CK, Palaniswami M (2011) Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea. Med Eng Phys 33(2):204–209

    Article  PubMed  Google Scholar 

  36. Iozzia L, Cerina L, Mainardi L (2016) Relationships between heart-rate variability and pulse-rate variability obtained from video-PPG signal using ZCA. Physiol Meas 37(11):1934–1944

    Article  PubMed  Google Scholar 

  37. Hernando D, Roca S, Sancho j AA, Bailón R (2018) Validation of the AppleWatch for heart rate variability measurements during relax and mental stress in healthy subjects. Sensors (Basel) 18(8):E2619

    Article  Google Scholar 

  38. Pernice R, Javorka M, Krohova J, Czippelova B, Turianikova Z, Busacca A, Faes L (2018) Reliability of short-term heart rate variability indexes assessed through photoplethysmography. Proc of 40th Ann Int Conf of the IEEE engineering in medicine and biology society (EMBC 2018), Honolulu, USA, pp 5610–5613

  39. Javorka M, Krohova J, Czippelova B, Turianikova Z, Lazarova Z, Javorka K, Faes L (2017) Basic cardiovascular variability signals: mutual directed interactions explored in the information domain. Physiol Meas 38(5):877–894

    Article  PubMed  Google Scholar 

  40. Vollmer M (2015) A robust, simple and reliable measure of heart rate variability using relative RR intervals. Proc 2015 Computing in Cardiology Conf (CinC), Nice, France, pp 609–612

  41. Magagnin V, Bassani T, Bari V, Turiel M, Maestri R, Pinna GD, Porta A (2011) Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices. Physiol Meas 32(11):1775–1786

    Article  PubMed  Google Scholar 

  42. Dantas EM, Sant'Anna ML, Andreão RV, Gonçalves CP, Morra EA, Baldo MP, Rodrigues SL, Mill JG (2012) Spectral analysis of heart rate variability with the autoregressive method: what model order to choose? Comput Biol Med 42(2):164–170

    Article  PubMed  Google Scholar 

  43. Marple SL Jr (1987) Digital spectral analysis with applications. New Jersey: Prentice Hall, Englewood Cliffs

  44. Baselli G, Porta A, Cerutti S (1997) Spectral decomposition in multichannel recordings based on multivariate parametric identification. IEEE Trans Biomed Eng 44(11):1092–1101

    Article  CAS  PubMed  Google Scholar 

  45. McCraty R, Shaffer F (2015) Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 4(1):46–61

    Article  PubMed  PubMed Central  Google Scholar 

  46. Draghici AE, Taylor JA (2016) The physiological basis and measurement of heart rate variability in humans. J Physiol Anthropol 35(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bari V, Girardengo G, Marchi A, De Maria B, Brink PA, Crotti L, Schwartz PJ, Porta A (2015) A refined multiscale self-entropy approach for the assessment of cardiac control complexity: application to long QT syndrome type 1 patients. Entropy 17(11):7768–7785

    Article  Google Scholar 

  48. Xiong W, Faes L, Ivanov PC (2017) Entropy measures, entropy estimators and their performance in quantifying complex dynamics: effects of artifacts, nonstationarity and long-range correlations. Phys Rev E 95:62114

    Article  Google Scholar 

  49. Faes L, Kugiumtzis D, Nollo G, Jurysta F, Marinazzo D (2015) Estimating the decomposition of predictive information in multivariate systems. Phys Rev E Stat Nonlinear Soft Matter Phys 91(3):032904

    Article  CAS  Google Scholar 

  50. Giavarina D (2015) Understanding Bland Altman analysis. Biochem Med (Zagreb) 25(2):141–151

    Article  Google Scholar 

  51. Chen X, Huang YY, Yun F, Chen TJ, Li J (2015) Effect of changes in sympathovagal balance on the accuracy of heart rate variability obtained from photoplethysmography. Exp Ther Med 10(6):2311–2318

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chan GS, Middleton PM, Celler BG, Wang L, Lovell NH (2007) Change in pulse transit time and pre-ejection period during head-up tilt-induced progressive central hypovolaemia. J Clin Monit Comput 21(5):283–293

    Article  PubMed  Google Scholar 

  53. Schneider GM, Jacobs DW, Gevirtz RN, O’Connor DT (2003) Cardiovascular haemodynamic response to repeated mental stress in normotensive subjects at genetic risk of hypertension: evidence of enhanced reactivity, blunted adaptation, and delayed recovery. J Hum Hypertens 17(12):829–840

    Article  CAS  PubMed  Google Scholar 

  54. Krohova J, Czippelova B, Turianikova Z, Lazarova Z, Tonhajzerova I, Javorka M (2017) Preejection period as a sympathetic activity index: a role of confounding factors. Physiol Res 66(Supplementum 2):S265–S275

    CAS  PubMed  Google Scholar 

  55. Proença J, Muehlsteff J, Aubert X, Carvalho P (2010) Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population? Proc of 32nd Ann Int Conf of the IEEE engineering in medicine and biology society (EMBC 2010), Buenos Aires, Argentina, pp 598–601

  56. Naschitz JE, Bezobchuk S, Mussafia-Priselac R, Sundick S, Dreyfuss D, Khorshidi I, Karidis A, Manor H, Nagar M, Peck ER, Peck S, Storch S, Rosner I, Gaitini L (2004) Pulse transit time by R-wave-gated infrared photoplethysmography: review of the literature and personal experience. J Clin Monit Comput 18(5–6):333–342

    Article  PubMed  Google Scholar 

  57. Ma H, Zhang Y (2006) Spectral analysis of pulse transittime variability and itscoherence with other cardiovascular variabilities. Conf Proc IEEE Eng Med Biol Soc 1:6442–6445

    Article  PubMed  Google Scholar 

  58. Foo J, Lim C (2006) Pulse transit time as an indirect marker for variations in cardiovascular related reactivity. Technol Health Care 14(2):97–108

    Article  PubMed  Google Scholar 

  59. Wang R, Jia W, Mao Z-H, Sclabassi RJ, Sun M (2014) cuff-free blood pressure estimation using pulse transit time and heart rate. Int Conf signal process proc, ZangZhou, China, pp 115–118

  60. Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS, Toreyin K, Kyal S (2015) Towards ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng 62(8):1879–1901

    Article  PubMed  PubMed Central  Google Scholar 

  61. Martin SLO, Carek AM, Kim CS, Ashouri H, Inan OT, Hahn JO, Mukkamala R (2016) Weighing scale-based pulse transit time is a superior marker of blood pressure than conventional pulse arrival time. Sci Rep 6:39273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90(4):1826–1831

    Article  CAS  PubMed  Google Scholar 

  63. Cohen MA, Taylor JA (2002) Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J Physiol 542(Pt 3):669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Faes L, Porta A, Rossato G, Adami A, Tonon D, Corica A, Nollo G (2013) Investigating the mechanisms of cardiovascular and cerebrovascular regulation in orthostatic syncope through an information decomposition strategy. Auton Neurosci 178(1–2):76–82

    Article  PubMed  Google Scholar 

  65. Faes L, Porta A, Nollo G, Javorka M (2017) Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks. Entropy 19(1):5

    Article  Google Scholar 

  66. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ (1991) Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol Heart Circ Physiol 261(4 Pt 2):H1231–H1245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research has been supported by the grant ASTONISH, H2020-EU.2.1.1.7. (ECSEL), University of Palermo, and grants APVV-0235-12, VEGA 1/0117/17, VEGA 1/0202/16, and project “Biomedical Center Martin” ITMS code no. 26220220187, the project co-financed from EU sources.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Riccardo Pernice.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study. All participants signed a written informed consent, and when the subject was a minor (age < 18 years) prior parental or legal guardian permission was gathered to allow the child to participate in the study. All the procedures were approved by the Ethical Committee of the Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pernice, R., Javorka, M., Krohova, J. et al. Comparison of short-term heart rate variability indexes evaluated through electrocardiographic and continuous blood pressure monitoring. Med Biol Eng Comput 57, 1247–1263 (2019). https://doi.org/10.1007/s11517-019-01957-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01957-4

Keywords

Navigation