Skip to main content
Log in

Influence of first proximal phalanx geometry on hallux valgus deformity: a finite element analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Hallux abducto valgus (HAV), one of the most common forefoot deformities, occurs primarily in elderly women. HAV is a complex disease without a clearly identifiable cause for its higher prevalence in women compared with men. Several studies have reported various skeletal parameters related to HAV. This study examined the geometry of the proximal phalanx of the hallux (PPH) as a potential etiologic factor in this deformity. A total of 43 cadaver feet (22 males and 21 females) were examined by means of cadaveric dissection. From these data, ten representative PPHs for both genders were selected, corresponding to five percentiles for males (0, 25, 50, 75, and 100 %) and five for females. These ten different PPHs were modeled and inserted in ten foot models. Stress distribution patterns within these ten PPH models were qualitatively compared using finite element analysis. In the ten cases analyzed, tensile stresses were larger on the lateral side, whereas compressive stresses were larger on the medial side. The bones of males were larger than female bones for each of the parameters examined; however, the mean difference between lateral and medial sides of the PPH (mean ± SD) was larger in women. Also the shallower the concavity at the base of the PPH, the larger the compressive stresses predicted. Internal forces on the PPH, due to differences in length between its medial and lateral sides, may force the PPH into a less-stressful position. The geometry of the PPH is a significant factor in HAV development influencing the other reported skeletal parameters and, thus, should be considered during preoperative evaluation. Clinical assessment should evaluate the first ray as a whole and not as isolated factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Actis RL, Ventura LB, Smith KE et al (2006) Numerical simulation of the plantar pressure distribution in the diabetic foot during the push-off stance. Med Biol Eng Comput 44:653–663. doi:10.1007/s11517-006-0078-5

    Article  PubMed  Google Scholar 

  2. Arinci Incel N, Genç H, Erdem HR, Yorgancioglu ZR (2003) Muscle imbalance in hallux valgus: an electromyographic study. Am J Phys Med Rehabil 82:345–349. doi:10.1097/01.PHM.0000064718.24109.26

    PubMed  Google Scholar 

  3. Barnicott NA, Hardy RH (1955) The position of the hallux in West Africans. J Anat 89:355–361

    Google Scholar 

  4. Bayod J, Losa-Iglesias M, Becerro de Bengoa-Vallejo R et al (2010) Advantages and drawbacks of proximal interphalangeal joint fusion versus flexor tendon transfer in the correction of hammer and claw toe deformity. A finite-element study. J Biomech Eng 132(5):51002–51007

    Article  Google Scholar 

  5. Berntsen GKR, Fonnebo V, Tollan A et al (2001) Forearm bone mineral density by age in 7, 620 men and women the Tromsø study, a population-based study. Am J Epidemiol 153:465–473

    Article  CAS  PubMed  Google Scholar 

  6. Bryant A, Tinley P, Singer K (2000) A comparison of radiographic measurements in normal, hallux valgus, and hallux limitus feet. J Foot Ankle Surg 39:39–43. doi:10.1016/S1067-2516(00)80062-9

    Article  CAS  PubMed  Google Scholar 

  7. Budhabhatti SP, Erdemir A, Petre M et al (2007) Finite element modeling of the first ray of the foot: a tool for the design of interventions. J Biomech Eng 129:750–756. doi:10.1115/1.2768108

    Article  PubMed  Google Scholar 

  8. Chen W-M, Lee T, Lee PV-S et al (2010) Effects of internal stress concentrations in plantar soft-tissue—a preliminary three-dimensional finite element analysis. Med Eng Phys 32:324–331. doi:10.1016/j.medengphy.2010.01.001

    Article  PubMed  Google Scholar 

  9. Cheung JT-M, Nigg BM (2008) Clinical applications of computational simulation of foot and ankle. Sport Sport Sport Orthop Traumatol 23:264–271. doi:10.1016/j.orthtr.2007.11.001

    Article  Google Scholar 

  10. Cheung JT-M, Zhang M, Leung AK-L, Fan Y-B (2005) Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J Biomech 38:1045–1054. doi:10.1016/j.jbiomech.2004.05.035

    Article  PubMed  Google Scholar 

  11. Coughlin MJ (1984) Hallux valgus—causes, evaluation, and treatment. Postgrad Med 75:174

    CAS  PubMed  Google Scholar 

  12. Duda GN, Mandruzzato F, Heller M et al (2001) Mechanical boundary conditions of fracture healing: borderline indications in the treatment of unreamed tibial nailing. J Biomech 34:639–650. doi:10.1016/s0021-9290(00)00237-2

    Article  CAS  PubMed  Google Scholar 

  13. Ferrari J, Hopkinson DA, Linney AD (2004) Size and shape differences between male and female foot bones: Is the female foot predisposed to hallux abducto valgus deformity? J Am Podiatr Med Assoc 94:434–452

    Article  PubMed  Google Scholar 

  14. García-Aznar JM, Bayod J, Rosas A et al (2009) Load transfer mechanism for different metatarsal geometries: a finite element study. J Biomech Eng 131:021011. doi:10.1115/1.3005174

    Article  PubMed  Google Scholar 

  15. García-González A, Bayod J, Prados-Frutos JC et al (2009) Finite-element simulation of flexor digitorum longus or flexor digitorum brevis tendon transfer for the treatment of claw toe deformity. J Biomech 42:1697–1704. doi:10.1016/j.jbiomech.2009.04.031

    Article  PubMed  Google Scholar 

  16. Gefen A (2002) Stress analysis of the standing foot following surgical plantar fascia release. J Biomech 35:629–637. doi:10.1016/s0021-9290(01)00242-1

    Article  PubMed  Google Scholar 

  17. Gefen A, Megido-Ravid M, Itzchak Y, Arcan M (2000) Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. J Biomech Eng 122:630–639

    Article  CAS  PubMed  Google Scholar 

  18. Hardy RH, Clapham JCR (1951) Observations on hallux valgus. J Bone Jt Surg Br 33-B:376–391

  19. Heden RI, Sorto LA (1981) The Buckle point and the metatarsal protrusion’s relationship to hallux valgus. J Am Podiatry Assoc 71:200–208

    Article  CAS  PubMed  Google Scholar 

  20. Helal B (1981) Surgery for adolescent Hallux valgus. Clin Orthop Relat Res (157):50–63

  21. Iida M, Basmajian JV (1974) Electromyography of hallux valgus. Clin Orthop Relat Res (101):220–224

  22. Johnston O (1959) Further studies of the inheritance of hand and foot anomalies. Clin Orthop 8:146–159

    Google Scholar 

  23. Kato T, Watanabe S (1981) The etiology of hallux valgus in Japan. Clin Orthop Relat Res 157:78–81

    PubMed  Google Scholar 

  24. Lamur KS, Huson A, Snijders CJ, Stoeckart R (1996) Geometric data of hallux valgus feet. Foot Ankle Int 17:548–554

    Article  CAS  PubMed  Google Scholar 

  25. Laporta G, Melillo T, Olinsky D (1974) X-ray evaluation of hallux abducto valgus deformity. J Am Podiatry Assoc 64:544–566

    Article  CAS  PubMed  Google Scholar 

  26. Lundberg BJ, Sulja T (1972) Skeletal parameters in the hallux valgus foot. Acta Orthop 43:576–582. doi:10.3109/17453677208991280

    Article  CAS  Google Scholar 

  27. Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol 521:307–313. doi:10.1111/j.1469-7793.1999.00307.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mancuso JE, Abramow SP, Landsman MJ et al (2003) The zero-plus first metatarsal and its relationship to bunion deformity. J Foot Ankle Surg 42:319–326. doi:10.1053/j.jfas.2003.09.001

    Article  PubMed  Google Scholar 

  29. Mann RA, Coughlin MJ (1981) Hallux valgus-etiology, anatomy, treatment and surgical considerations. Clin Orthop Relat Res 157:31–41

    PubMed  Google Scholar 

  30. Matzaroglou C, Bougas P, Panagiotopoulos E et al (2010) Ninety-degree chevron osteotomy for correction of hallux valgus deformity: clinical data and finite element analysis. Open Orthop J 4:152–156

    Article  PubMed Central  PubMed  Google Scholar 

  31. Munuera P, Polo J, Rebollo J (2008) Length of the first metatarsal and hallux in hallux valgus in the initial stage. Int Orthop 32:489–495. doi:10.1007/s00264-007-0350-9

    Article  PubMed Central  PubMed  Google Scholar 

  32. Nix S, Smith M, Vicenzino B (2010) Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res. doi:10.1186/1757-1146-3-21

    PubMed Central  PubMed  Google Scholar 

  33. Root ML, Weed JH, Orien WP (1977) Normal and abnormal function of the foot. Clinical Biomechanics, vol 2. Clinical Biomechanics Corporation, Los Angeles

  34. Shimazaki K, Takebe K (1981) Investigations on the origin of hallux valgus by electromyographic analysis. Kobe J Med Sci 27:139–158

    CAS  PubMed  Google Scholar 

  35. Sim-Fook LAM, Hodgson AR (1958) A comparison of foot forms among the non-shoe and shoe-wearing Chinese population. J Bone Jt Surg 40:1058–1062

    Google Scholar 

  36. Takahashi A, Suzuki J, Takemura H (2012) Finite element modeling and simulation of human gait with a spontaneous plantar flexion. Int J Aerosp Light Struct 02:171–185. doi:10.3850/S2010428612000311

    Article  Google Scholar 

  37. Tanaka Y, Takakura Y, Kumai T et al (1995) Radiographic analysis of hallux valgus. A two-dimensional coordinate system. J Bone Jt Surg 77:205–213

    CAS  Google Scholar 

  38. Tao K, Wang C-T, Wang D-M, Wang X (2005) Primary analysis of the first ray using a 3-dimension finite element foot model. In: Conference proceedings IEEE engineering medicine biological society Shanghai, China, pp 2946–9

  39. Viladot A (1973) Metatarsalgia due to biomechanical alterations of the forefoot. Orthop Clin North Am 4:165–178

    CAS  PubMed  Google Scholar 

  40. Wu KK (1987) Mitchell bunionectomy: an analysis of four hundred and thirty personal cases. J Foot Surg 26:277–292

    CAS  PubMed  Google Scholar 

  41. Wunderlich RE, Cavanagh PR (2001) Gender differences in adult foot shape: implications for shoe design. Med Sci Sports Exerc 33:605–611

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Bayod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Orcajo, E., Bayod, J., Becerro-de-Bengoa-Vallejo, R. et al. Influence of first proximal phalanx geometry on hallux valgus deformity: a finite element analysis. Med Biol Eng Comput 53, 645–653 (2015). https://doi.org/10.1007/s11517-015-1260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1260-4

Keywords

Navigation