Skip to main content
Log in

miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Background

With the given diversity and abundance of several targets of miRNAs, they functionally appear to interact with several elements of the multiple cellular networks to maintain physiologic homeostasis. They can function as tumor suppressors or oncogenes, whose under or overexpression has both diagnostic and prognostic significance in various cancers while being implicated as prospective regulators of age-related disorders (ARD) as well. Establishing a concatenate between ARD and cancers by looking into the insights of the shared miRNAs may have a practical relevance.

Methods

In the present work, we performed network analysis of miRNA-disease association and miRNA-target gene interaction to prioritize miRNAs that play significant roles in the manifestation of cancer as well as ARD. Also, we developed a repository that stores miRNAs common to both ARD and cancers along with their target genes.

Results

We have comprehensively curated all miRNAs that we found to be shared in both the diseases in the human genome and established a database, miRACA (Database for microRNAs Associated with Cancers and ARD) that currently houses information of 1648 miRNAs that are significantly associated with 38 variants supported with pertinent data. It has been made available online at http://genomeinformatics.dtu.ac.in/miraca/ for easy retrieval and utilization of data by the scientific community.

Conclusion

To the best of our knowledge, our database is the first attempt at compilation of such data. We believe this work may serve as a significant resource and facilitate the analysis of miRNA regulatory mechanisms shared between cancers and ARD to apprehend disease etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal V, Bell G W, Nam J W, Bartel D P (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4: e05005

    Article  PubMed Central  Google Scholar 

  • Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281–297

    Article  PubMed  CAS  Google Scholar 

  • Chang-Hao Tsao S, Behren A, Cebon J, Christophi C (2015). The role of circulating microRNA in hepatocellular carcinoma. Front Biosci (Landmark Ed), 20(1): 78–104

    Article  Google Scholar 

  • Dalmay T, Edwards D R (2006). MicroRNAs and the hallmarks of cancer. Oncogene, 25(46): 6170–6175

    Article  PubMed  CAS  Google Scholar 

  • Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L, Schreiner C, Fortschegger K, Chang M W, Hackl M, Monteforte R, Kühnel H, Schosserer M, Gruber F, Tschachler E, Scheideler M, Grillari-Voglauer R, Grillari J, Wieser M (2013). High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell, 12(3): 446–458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack F J (2006). Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer, 6(4): 259–269

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya S N, Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 9(2): 102–114

    Article  PubMed  CAS  Google Scholar 

  • Gan J, Qu Y, Li J, Zhao F, Mu D (2015). An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci, 26(2): 225–237

    Article  PubMed  CAS  Google Scholar 

  • Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce C M, Bolondi L, Negrini M (2008). MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med, 12(6a 6A): 2189–2204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffiths-Jones S (2006). miRBase: the microRNA sequence database. Methods Mol Biol, 342: 129–138

    PubMed  CAS  Google Scholar 

  • Guo H, Ingolia N T, Weissman J S, Bartel D P (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308): 835–840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanahan D, Weinberg R A (2000). The hallmarks of cancer. Cell, 100 (1): 57–70

    Article  PubMed  CAS  Google Scholar 

  • He H, Baldwin G S (2008). Rho GTPases and p21-activated kinase in the regulation of proliferation and apoptosis by gastrins. Int J Biochem Cell Biol, 40(10): 2018–2022

    Article  PubMed  CAS  Google Scholar 

  • He H, Yim M, Liu K H, Cody S C, Shulkes A, Baldwin G S (2008). Involvement of G proteins of the Rho family in the regulation of Bcl-2-like protein expression and caspase 3 activation by Gastrins. Cell Signal, 20(1): 83–93

    Article  PubMed  CAS  Google Scholar 

  • He X, Zhang J (2006). Why do hubs tend to be essential in protein networks? PLoS Genet, 2(6): e88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang W, Sherman B T, Lempicki R A (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37(1): 1–13

    Article  CAS  Google Scholar 

  • Huang W, Sherman B T, Lempicki R A (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1): 44–57

    Article  CAS  Google Scholar 

  • Hulsen T, de Vlieg J, Alkema W (2008). BioVenn-a web application for the comparison and visualization of biological lists using areaproportional Venn diagrams. BMC Genomics, 9(1): 488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huntzinger E, Izaurralde E (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet, 12(2): 99–110

    Article  PubMed  CAS  Google Scholar 

  • Hwang H W, Mendell J T (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer, 94(6): 776–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iorio M V, Ferracin M, Liu C G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo J P, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin G A, Querzoli P, Negrini M, Croce C M (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65(16): 7065–7070

    Article  PubMed  CAS  Google Scholar 

  • Jung H J, Suh Y (2012). MicroRNA in Aging: From Discovery to Biology. Curr Genomics, 13(7): 548–557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang J, Pervaiz S (2013). Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation? Front Oncol, 2: 206

    Article  PubMed  PubMed Central  Google Scholar 

  • Kayani Mu, Kayani M A, Malik F A, Faryal R (2011). Role of miRNAs in breast cancer. Asian Pac J Cancer Prev, 12(12): 3175–3180

    PubMed  Google Scholar 

  • Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso M A (2014). Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res, 2014: 149185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee R C, Feinbaum R L, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5): 843–854

    Article  PubMed  CAS  Google Scholar 

  • Lewis B P, Burge C B, Bartel D P (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1): 15–20

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014). HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res, 42(Database issue): D1070–D1074

    Article  PubMed  CAS  Google Scholar 

  • López-Otín C, Blasco M A, Partridge L, Serrano M, Kroemer G (2013). The hallmarks of aging. Cell, 153(6): 1194–1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Getz G, Miska E A, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert B L, Mak R H, Ferrando A A, Downing J R, Jacks T, Horvitz H R, Golub T R (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043): 834–838

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell M J, Kitano H (2005). The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res, 33(suppl_1):D284–8.

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Muruganujan A, Casagrande J T, Thomas P D (2013). Large-scale gene function analysis with the PANTHER classification system. Nat Protoc, 8(8): 1551–1566

    Article  PubMed  CAS  Google Scholar 

  • Mulrane L, McGee S F, Gallagher W M, O’Connor D P (2013). miRNA dysregulation in breast cancer. Cancer Res, 73(22): 6554–6562

    Article  PubMed  CAS  Google Scholar 

  • Palmero E I, de Campos S G, Campos M, de Souza N C, Guerreiro I D, Carvalho A L, Marques M M (2011). Mechanisms and role of microRNA deregulation in cancer onset and progression. Genet Mol Biol, 34(3): 363–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ponnappan S, Ponnappan U (2011). Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal, 14 (8): 1551–1585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ro S, Park C, Young D, Sanders K M, Yan W (2007). Tissue-dependent paired expression of miRNAs. Nucleic Acids Res, 35(17): 5944–5953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rozengurt E, Walsh J H (2001). Gastrin, CCK, signaling, and cancer. Annu Rev Physiol, 63(1): 49–76

    Article  PubMed  CAS  Google Scholar 

  • Serpico D, Molino L, Di Cosimo S (2014). microRNAs in breast cancer development and treatment. Cancer Treat Rev, 40(5): 595–604

    Article  PubMed  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga N S,Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13(11): 2498–2504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava I, Gahlot L K, Khurana P, Hasija Y (2016). dbAARD & AGP: A computational pipeline for the prediction of genes associated with age related disorders. J Biomed Inform, 60: 153–161

    Article  PubMed  Google Scholar 

  • Takahashi R U, Miyazaki H, Ochiya T (2015). The roles of microRNAs in breast cancer. Cancers (Basel), 7(2): 598–616

    Article  CAS  Google Scholar 

  • Volinia S, Calin G A, Liu C G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt R L, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris C C, Croce C M (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103(7): 2257–2261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Chadwick W, Park S S, Zhou Y, Silver N, Martin B, Maudsley S (2010). Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration. CNS Neurol Disord Drug Targets, 9(5): 651–660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Fan J, Belasco J G (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA, 103(11): 4034–4039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yip K W, Reed J C (2008). Bcl-2 family proteins and cancer. Oncogene, 27(50): 6398–6406

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Huang J, Yang N, Greshock J, Megraw M S, Giannakakis A, Liang S, Naylor T L, Barchetti A, Ward M R, Yao G, Medina A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty P A, Weber B L, Coukos G (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA, 103 (24): 9136–9141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasha Hasija.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, R., Gahlot, L.K. & Hasija, Y. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD). Front. Biol. 13, 36–50 (2018). https://doi.org/10.1007/s11515-018-1481-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-018-1481-7

Keywords

Navigation