Skip to main content
Log in

Regulation beyond genome sequences: DNA and histone methylation in embryonic stem cells

  • Review
  • Published:
Frontiers in Biology

Abstract

Embryonic stem (ES) cells distinct themselves from other cell type populations by their pluripotent ability. The unique features of ES cells are controlled by both genetic and epigenetic factors. Studies have shown that the methylation status of DNA and histones in ES cells is quite different from that of differentiated cells and somatic stem cells. Herein, we summarized recent advances in DNA and histone methylation studies of mammalian ES cells. The methylation status of several key pluripotent regulatory genes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avilion A A, Nicolis S K, Pevny L H, Perez L, Vivian N, Lovell-Badge R (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev, 17(1): 126–140

    Article  CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh T Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4): 823–837

    Article  CAS  PubMed  Google Scholar 

  • Benevolenskaya E V (2007). Histone H3K4 demethylases are essential in development and differentiation. Biochem Cell Biol, 85(4): 435–443

    Article  CAS  PubMed  Google Scholar 

  • Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2): 315–326

    Article  CAS  PubMed  Google Scholar 

  • Bibikova M, Chudin E, Wu B, Zhou L, Garcia E W, Liu Y, Shin S, Plaia T W, Auerbach J M, Arking D (2006). Human embryonic stem cells have a unique epigenetic signature. Genome Res, 16(9): 1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Bibikova M, Laurent L C, Ren B, Loring J F, Fan J B (2008). Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell, 2(2): 123–134

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21

    Article  CAS  PubMed  Google Scholar 

  • Brambrink T, Foreman R, Welstead G G, Lengner C J, Wernig M, Suh H, Jaenisch R (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2(2): 151–159

    Article  CAS  PubMed  Google Scholar 

  • Callinan P A, Feinberg A P (2006). The emerging science of epigenomics. Hum Mol Genet 15Spec No, 1: R95–R101

    Article  CAS  PubMed  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113(5): 643–655

    Article  CAS  PubMed  Google Scholar 

  • Chin M H, Mason M J, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5(1): 111–123

    Article  CAS  PubMed  Google Scholar 

  • Dodge J E, Ramsahoye B H, Wo Z G, Okano M, Li E (2002). De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene, 289(1–2): 41–48

    Article  CAS  PubMed  Google Scholar 

  • Fouse S D, Shen Y, Pellegrini M, Cole S, Meissner A, Van Neste L, Jaenisch R, Fan G (2008). Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell, 2(2): 160–169

    Article  CAS  PubMed  Google Scholar 

  • Fraga M F, Esteller M (2002). DNA methylation: a profile of methods and applications. Biotechniques, 33(3): 632, 634, 636–649

    CAS  PubMed  Google Scholar 

  • Goldberg A D, Allis C D, Bernstein E (2007). Epigenetics: a landscape takes shape. Cell, 128(4): 635–638

    Article  CAS  PubMed  Google Scholar 

  • Haines T R, Rodenhiser D I, Ainsworth P J (2001). Allele-specific non-CpG methylation of the Nf1 gene during early mouse development. Dev Biol, 240(2): 585–598

    Article  CAS  PubMed  Google Scholar 

  • Hochedlinger K, Plath K (2009). Epigenetic reprogramming and induced pluripotency. Development, 136(4): 509–523

    Article  CAS  PubMed  Google Scholar 

  • Ikegami K, Iwatani M, Suzuki M, Tachibana M, Shinkai Y, Tanaka S, Greally J M, Yagi S, Hattori N, Shiota K (2007). Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cells. Genes Cells, 12(1): 1–11

    Article  CAS  PubMed  Google Scholar 

  • Jackson J P, Lindroth A M, Cao X, Jacobsen S E (2002). Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature, 416(6880): 556–560

    Article  CAS  PubMed  Google Scholar 

  • Jeffares D C, Poole A M, Penny D (1998). Relics from the RNAworld. J Mol Evol, 46(1): 18–36

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin S B (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet, 3(6): 415–428

    CAS  PubMed  Google Scholar 

  • Keller G (2005). Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev, 19(10): 1129–1155

    Article  CAS  PubMed  Google Scholar 

  • Khulan B, Thompson R F, Ye K, Fazzari M J, Suzuki M, Stasiek E, Figueroa M E, Glass J L, Chen Q, Montagna C (2006). Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res, 16(8): 1046–1055

    Article  CAS  PubMed  Google Scholar 

  • Koch C M, Andrews R M, Flicek P, Dillon S C, Karaz U, Clelland G K, Wilcox S, Beare D M, Fowler J C, Couttet P (2007). The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res, 17(6): 691–707

    Article  CAS  PubMed  Google Scholar 

  • Lachner M, Jenuwein T (2002). The many faces of histone lysine methylation. Curr Opin Cell Biol, 14(3): 286–298

    Article  CAS  PubMed  Google Scholar 

  • Latham T, Gilbert N, Ramsahoye B (2008). DNA methylation in mouse embryonic stem cells and development. Cell Tissue Res, 331(1): 31–55

    Article  CAS  PubMed  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck Aaha, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters A (2003). Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol, 13(14): 1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Li E (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet, 3(9): 662–673

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q M (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462: 315–322

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mader A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251–260

    Article  CAS  PubMed  Google Scholar 

  • Meissner A, Mikkelsen T S, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein B E, Nusbaum C, Jaffe D B (2008). Genomescale DNA methylation maps of pluripotent and differentiated cells. Nature, 454(7205): 766–770

    CAS  PubMed  Google Scholar 

  • Meshorer E, Misteli T (2006). Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol, 7(7): 540–546

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen T S, Ku M, Jaffe D B, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T K, Koche R P (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153): 553–560

    Article  CAS  PubMed  Google Scholar 

  • Narlikar G J, Fan H Y, Kingston R E (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell, 108(4): 475–487

    Article  CAS  PubMed  Google Scholar 

  • Ng S S, Yue W W, Oppermann U, Klose R J (2009). Dynamic protein methylation in chromatin biology. Cell Mol Life Sci, 66(3): 407–422

    Article  CAS  PubMed  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3): 379–391

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Miyazaki J, Smith A G (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24(4): 372–376

    Article  CAS  PubMed  Google Scholar 

  • Ooi S K, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin S P, Allis C D (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154): 714–717

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir G A, Stewart R, Thomson J A (2007). Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell, 1(3): 299–312

    Article  CAS  PubMed  Google Scholar 

  • Roth S Y, Denu J M, Allis C D (2001). Histone acetyltransferases. Annu Rev Biochem, 70: 81–120

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Do J T, Desponts C, Hahm H S, Schöler H R, Ding S (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2(6): 525–528

    Article  CAS  PubMed  Google Scholar 

  • Shiota K, Kogo Y, Ohgane J, Imamura T, Urano A, Nishino K, Tanaka S, Hattori N (2002). Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells, 7(9): 961–969

    Article  CAS  PubMed  Google Scholar 

  • Silva J, Smith A (2008). Capturing pluripotency. Cell, 132(4): 532–536

    Article  CAS  PubMed  Google Scholar 

  • Smith A G (2001). Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol, 17: 435–462

    Article  CAS  PubMed  Google Scholar 

  • Steger D J, Lefterova M I, Ying L, Stonestrom A J, Schupp M, Zhuo D, Vakoc A L, Kim J E, Chen J, Lazar M A (2008). DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol, 28(8): 2825–2839

    Article  CAS  PubMed  Google Scholar 

  • Strahl B D, Allis C D (2000). The language of covalent histone modifications. Nature, 403(6765): 41–45

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676

    Article  CAS  PubMed  Google Scholar 

  • Tamaru H, Selker E U (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature, 414(6861): 277–283

    Article  CAS  PubMed  Google Scholar 

  • Torres-Padilla M E, Parfitt D E, Kouzarides T, Zernicka-Goetz M (2007). Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature, 445(7124): 214–218

    Article  CAS  PubMed  Google Scholar 

  • Tucker K L (2001). Methylated cytosine and the brain: a new base for neuroscience. Neuron, 30(3): 649–652

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Davies J J, Wittig D, Oakeley E J, Haase M, Lam W L, Schubeler D (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet, 37(8): 853–862

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Morris J R (2001). Genes, genetics, and epigenetics: a correspondence. Science, 293(5532): 1103–1105

    Article  CAS  Google Scholar 

  • Yeo S, Jeong S, Kim J, Han J S, Han Y M, Kang Y K (2007). Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells. Biochem Biophys Res Commun, 359(3): 536–542

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Ruan Y, Wei C L (2008). Tackling the epigenome in the pluripotent stem cells. J Genet Genomics, 35(7): 403–412

    Article  CAS  PubMed  Google Scholar 

  • Zhao X D, Han X, Chew J L, Liu J, Chiu K P, Choo A, Orlov Y L, Sung W K, Shahab A, Kuznetsov VA (2007). Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell, 1(3): 286–298

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Zhou or Xiu-Jie Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Zhou, Q. & Wang, XJ. Regulation beyond genome sequences: DNA and histone methylation in embryonic stem cells. Front. Biol. 5, 41–47 (2010). https://doi.org/10.1007/s11515-010-0006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-010-0006-9

Keywords

Navigation