Skip to main content
Log in

Fabrication and Characterization of Resveratrol-Loaded Gliadin Particles Stabilized by Gelatin

  • Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The poor solubility and sensitive photosensitivity of resveratrol (RES) greatly limit its application in functional aqueous food systems. Herein, the composite particles with gliadin (GLI) as the core and type B gelatin (GEL) as the shell were designed to load resveratrol to enhance its ability to resist ultraviolet radiation and bioavailability. The core-shell structure and size (650 nm) of the composite particles were confirmed by dynamic light scattering, isothermal titration calorimetry (ITC) and transmission electron microscopy (TEM), and the binding between gliadin and gelatin was mainly driven by spontaneous electrostatic force (∆H=-3.080*107, ∆G=-9.055*104). The encapsulation efficiency (EE) and loading capacity (LC) of resveratrol by the particles were 7f8.9% and 35.9 µg/mg, and the particles were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC). Furthermore, compared with free resveratrol, the anti-ultraviolet radiation ability of resveratrol protected by core-shell particles was significantly enhanced (P < 0.05), and the release percentage was increased from 55.1 to 79.5%. These findings indicate that the composite particles have good application potential for the protection and delivery of hydrophobic active substances.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Wenzel, V. Somoza, Mol. Nutr. Food Res. 49(5), 472–481 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. K. Ali, F. Maltese, Y.H. Choi, R. Verpoorte, Phytochem Rev. 9(3), 357–378 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. B. Tian, J. Liu, J. Sci. Food Agric. 100(4), 1392–1404 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. R. Akter, M.H. Rahman, D. Kaushik et al., Molecules 26 (17) (2021)

  5. J.A. Baur, K.J. Pearson, N.L. Price et al., Nature. 444(7117), 337–342 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Bernal-Ramirez, C. Silva-Platas, C. Jerjes-Sanchez et al., Oxid Med Cell Longev 2021, 9912434 (2021)

  7. Z.N. Ren, J. Yang, M.Y. Zhang et al., Acta Pharmacol. Sin (2021)

  8. I. Esparza, M.J. Cimminelli, J.A. Moler, N. Jimenez-Moreno, C. Ancin-Azpilicueta, Antioxid. (Basel) 9 (8) (2020)

  9. T. Xu, Z. Gu, L. Cheng, C. Li, Z. Li, Y. Hong, Carbohydr. Polym. 305, 120566 (2023)

    Article  CAS  PubMed  Google Scholar 

  10. W. Li, D. Bi, J. Yi et al., Food Chem. 410, 135418 (2023)

    Article  CAS  PubMed  Google Scholar 

  11. L. Miao, L. Daozhou, C. Ying, M. Qibing, Z. Siyuan, Colloids Surf. B Biointerfaces. 204, 111786 (2021)

    Article  CAS  PubMed  Google Scholar 

  12. L. Qin, X. Zhao, Y. He et al., Mater. (Basel) 13 (7) (2020)

  13. G. Davidov-Pardo, I.J. Joye, D.J. McClements, Food Hydrocoll. 45, 309–316 (2015)

    Article  CAS  Google Scholar 

  14. Y.-Y. Xu, Y.-F. Huo, L. Xu et al., J. Drug Deliv. Sci. Technol. 66, 102811 (2021)

    Article  CAS  Google Scholar 

  15. R. Nunes, A. Baiao, D. Monteiro, J. Neves, B. Sarmento, Drug Deliv Transl Res. 10(3), 826–837 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. W. Wu, X. Kong, C. Zhang, Y. Hua, Y. Chen, X. Li, LWT. 129, 109532 (2020)

    Article  CAS  Google Scholar 

  17. X. Huang, Y. Liu, Y. Zou et al., Food Hydrocoll. 93, 261–269 (2019)

    Article  CAS  Google Scholar 

  18. I.J. Joye, G. Davidov-Pardo, D.J. McClements, Food Hydrocoll. 49, 127–134 (2015)

    Article  CAS  Google Scholar 

  19. Y. Fan, Y. Liu, L. Gao, Y. Zhang, J. Yi, Food Chem. 261, 283–291 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. M.N. Hattrem, S. Molnes, I.J. Haug, K.I. Draget, Food Hydrocoll. 43, 700–707 (2015)

    Article  CAS  Google Scholar 

  21. I.J. Joye, V.A. Nelis, D.J. McClements, Food Hydrocoll. 43, 236–242 (2015)

    Article  CAS  Google Scholar 

  22. M. Gulfam, J.E. Kim, J.M. Lee, B. Ku, B.H. Chung, B.G. Chung, Langmuir. 28(21), 8216–8223 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. M. Zhou, Q. Hu, T. Wang, J. Xue, Y. Luo, Food Hydrocoll. 77, 204–211 (2018)

    Article  CAS  Google Scholar 

  24. D.-P. Gabriel, P.-C. Sonia, R.M.-A. María, D.J. McClements, J. Agric. Food Chem. 63 (15) (2015)

  25. C.-R. Su, Y.-Y. Huang, Q.-H. Chen et al., LWT. 139, 110591 (2020)

    Article  Google Scholar 

  26. J. Zhang, G. Jia, Z. Wanbin et al., Food Hydrocoll. 112, 106280 (2021)

    Article  CAS  Google Scholar 

  27. I.J. Joye, V.A. Nelis, D.J. McClements, Food Hydrocoll. 44, 86–93 (2015)

    Article  CAS  Google Scholar 

  28. A.B. Kayitmazer, Adv. Colloid Interface Sci. 239, 169–177 (2017)

    Article  CAS  PubMed  Google Scholar 

  29. M.E. Vuillemin, F. Michaux, L. Muniglia, M. Linder, J. Jasniewski, Food Hydrocoll. 96, 463–474 (2019)

    Article  CAS  Google Scholar 

  30. W. Xiong, Y. Li, C. Ren, J. Li, B. Li, F. Geng, Food Hydrocoll. 120, 106958 (2021)

    Article  CAS  Google Scholar 

  31. Q.-Z. Zeng, M.-F. Li, Z.-Z. Li et al., LWT. 105, 79–86 (2019)

    Article  CAS  Google Scholar 

  32. J. Wang, E. Dumas, A. Gharsallaoui, Food Hydrocoll. 88, 163–169 (2019)

    Article  CAS  Google Scholar 

  33. J.M.I. Isabel Ezpeleta, S. Stainmesse, C. Chabenat et al., Int. J. Pharm. 131(2), 191–200 (1996)

    Article  Google Scholar 

  34. D. Peng, W. Jin, L.M.C. Sagis, B. Li, Food Hydrocoll. 122, 107039 (2022)

    Article  CAS  Google Scholar 

  35. M. Xing, H. Zhao, R. Ahmed et al., Colloids Surf., A 654, 129829 (2022)

    Article  CAS  Google Scholar 

  36. X. Yin, H. Dong, H. Cheng, C. Ji, L. Liang, Food Hydrocoll. 124, 107308 (2022)

    Article  CAS  Google Scholar 

  37. F. Liu, D. Ma, X. Luo et al., Food Hydrocoll. 79, 450–461 (2018)

    Article  CAS  Google Scholar 

  38. G.N. Secundo Francesco, J. Agric. Food Chem. (2005)

  39. A. Francioso, A. Boffi, C. Villani et al., J. Org. Chem. 79(19), 9381–9384 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. S. Ji, C. Jia, D. Cao, B. Muhoza, X. Zhang, LWT. 129, 109556 (2020)

    Article  CAS  Google Scholar 

  41. Y. Liu, L. Gao, J. Yi, Y. Fan, X. Wu, Y. Zhang, Food Funct. 11(2), 1525–1536 (2020)

    Article  PubMed  Google Scholar 

  42. Y. Liu, Q. Liang, X. Liu, H. Raza, H. Ma, X. Ren, LWT. 153, 112331 (2022)

    Article  CAS  Google Scholar 

  43. S. Chen, Y. Han, L. Jian, W. Liao, Y. Zhang, Y. Gao, Carbohydr. Polym. 236, 116090 (2020)

    Article  CAS  PubMed  Google Scholar 

  44. C. Pu, W. Tang, M. Liu, Y. Zhu, Q. Sun, Food Res. Int. 135, 109308 (2020)

    Article  CAS  PubMed  Google Scholar 

  45. G. Davidov-Pardo, I.J. Joye, D.J. McClements (eds.), By Rossen Donev (Biomed Consult Ltd, Swansea, United Kingdom), p. 293–325

  46. X.-P. Zhang, Y. Le, J.-X. Wang, H. Zhao, J.-F. Chen, LWT - Food Science and Technology. 50(2), 622–628 (2013)

    Article  CAS  Google Scholar 

  47. J. Xiao, S. Nian, Q. Huang, Food Hydrocoll. 51, 166–175 (2015)

    Article  CAS  Google Scholar 

  48. A.C. Santos, I. Pereira, M. Pereira-Silva et al., Trends Food Sci. Technol. 91, 483–497 (2019)

    Article  CAS  Google Scholar 

  49. X. Chen, D.J. McClements, J. Wang et al., J. Agric. Food Chem. 66(14), 3691–3699 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (2021YFD2100904, 2021YFD2100402), the National Natural Science Foundation of China (No. 32172147, 31871729), the Modern Agriculture key Project of Jiangsu Province of China (BE2022317), the Modern Agricultural Industrial Technology System Construction Project of Jiangsu Province of China (JATS [2021] 522), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Zhengzhuo Zhao performed the experiments, prepared the figures and tables, analyzed the data regarding and wrote the manuscript. Wenfei Xiong designed the experimental protocol. Lifeng Wang, Xingrong Ju, Yijun Yao and Jing Zhang contributed to data interpretation and editing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lifeng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Xiong, W., Ju, X. et al. Fabrication and Characterization of Resveratrol-Loaded Gliadin Particles Stabilized by Gelatin. Food Biophysics 18, 510–519 (2023). https://doi.org/10.1007/s11483-023-09792-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-023-09792-9

Keywords

Navigation