Skip to main content
Log in

Effects of Soy Proteins and Hydrolysates on Fat Globule Coalescence and Whipping Properties of Recombined Low-Fat Whipped Cream

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The interaction and synergetic effect of soy protein isolate (SPI) and its hydrolysates with different concentrations of monoglycerides were explored at the air-water/oil interfaces in recombined low-fat whipped cream (20%). The creams were made with 20% palm oil, 18% carbohydrate, 0.22% stabilizers, and 0.25–1.00% monoglycerides. The proteins used were native soy protein isolate (NSPI), commercial soy protein isolate (CSPI), soy protein hydrolysates by pepsin (SPHPe), soy protein hydrolysates by papain (SPHPa), and SC (sodium caseinate). Overrun, stability, rheological behavior, and texture of recombined low-fat whipped cream were studied. Results indicated that increasing concentration of monoglycerides was effective in improving the textural, whipping properties, and stability of recombined low-fat whipped cream. Increasing concentration of monoglycerides in the mix prompted the displacement of adsorbed protein from fat globules, built up a firmer structure of fat aggregates, and stabilized the trapped air bubbles in the structure of recombined low-fat whipped cream. At the same level of monoglycerides, SPHPa whipped cream produced a similar overrun, stability, and texture as SC. Due to the high proportion of β-conglycinin in SPHPe, a low degree of fat globule partial coalescence occurred and led to low overrun and weakened structure in recombined low-fat whipped cream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.E. Allen, E. Dickinson, B. Murray, LWT - Food Sci. Technol. 39, 225 (2006)

    Article  CAS  Google Scholar 

  2. K. Ihara, M. Hirota, T. Akitsu, K. Urakawa, T. Abe, M. Sumi, T. Okawa, T. Fujii, J. Dairy Sci. 98, 2875 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. M. Sajedi, A. Nasirpour, J. Keramat, S. Desobry, Food Hydrocoll. 36, 93 (2014)

    Article  CAS  Google Scholar 

  4. A.K. Smith, H.D. Goff, Y. Kakuda, Int. Dairy J. 10, 295 (2000)

    Article  CAS  Google Scholar 

  5. J. Maldonado-Valderrama, J.M.R. Patino, Curr. Opin. Colloid Interface Sci. 15, 271 (2010)

    Article  CAS  Google Scholar 

  6. J. Zhang, L. Liu, Y. Jiang, S. Faisal, Q. Wang, J. Food Eng. 264, 109668 (2020)

    Article  CAS  Google Scholar 

  7. H.D. Goff, Curr. Opin. Colloid Interface Sci. 7, 432 (2002)

    Article  CAS  Google Scholar 

  8. H.J. Kim, A. Bot, I.C.M. de Vries, M. Golding, E.G. Pelan, Food Res. Int. 53, 342 (2013)

    Article  CAS  Google Scholar 

  9. T.T.Q. Phan, K. Moens, T.T. Le, P. Van der Meeren, K. Dewettinck, Int. Dairy J. 39, 16 (2014)

    Article  CAS  Google Scholar 

  10. P. Walstra, Chem. Eng. Sci. 48, 333 (1993)

    Article  CAS  Google Scholar 

  11. R.F. Petrut, S. Danthine, C. Blecker, Adv. Colloid Interf. Sci. 229, 25 (2016)

    Article  CAS  Google Scholar 

  12. M.B. Munk, H.R. Erichsen, M.L. Andersen, J. Colloid Interface Sci. 419, 134 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. E. Fredrick, B. Heyman, K. Moens, S. Fischer, T. Verwijlen, P. Moldenaers, P. Van der Meeren, K. Dewettinck, Food Res. Int. 51, 936 (2013)

    Article  CAS  Google Scholar 

  14. M.D. Eisner, H. Wildmoser, E.J. Windhab, Colloids Surfaces A Physicochem. Eng. Asp. 263, 390 (2005)

    Article  CAS  Google Scholar 

  15. F. Peng, S. He, H. Yi, Q. Li, W. Xu, R. Wang, and Y. Ma, https://doi.org/10.1080/10942912.2018.146075521, 1190 (2018)

  16. J. Jiang, Y. Jin, X. Liang, M. Piatko, S. Campbell, S.K. Lo, Y. Liu, Food Hydrocoll. 81, 15 (2018)

    Article  CAS  Google Scholar 

  17. K. van Lent, C.T. Le, B. Vanlerberghe, P. Van der Meeren, Int. Dairy J. 18, 1003 (2008)

    Article  CAS  Google Scholar 

  18. J.J. Anderson, M.S. Anthony, J.M. Cline, S.A. Washburn, S.C. Garner, Public Health Nutr. 2, 489 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Z. Wang, B.L. Dekkers, A. Jan, V. Der Goot, J. Food Eng. 275, 109866 (2020)

    Article  CAS  Google Scholar 

  20. J. Zhang, L. Liu, Y. Jiang, F. Shah, Y. Xu, Q. Wang, Food Hydrocoll. 99, 105311 (2020)

    Article  CAS  Google Scholar 

  21. Z. Wang, B.L. Dekkers, R. Boom, A.J. van der Goot, Food Hydrocoll. 95, 143 (2019)

    Article  CAS  Google Scholar 

  22. W. Hoffmann and W. Buchheim, (n.d.)

  23. N. Diftis, V. Kiosseoglou, Food Hydrocoll. 20, 787 (2006)

    Article  CAS  Google Scholar 

  24. W. Li, Y. Wang, H. Zhao, Z. He, M. Zeng, F. Qin, J. Chen, Food Hydrocoll. 60, 453 (2016)

    Article  CAS  Google Scholar 

  25. M. Keerati-u-rai, M. Corredig, Food Hydrocoll. 23, 2141 (2009)

    Article  CAS  Google Scholar 

  26. P.G. Scurlock, J. Dairy Res. 53, 431 (1986)

    Article  Google Scholar 

  27. J. Palanuwech, R. Potineni, R.F. Roberts, J.N. Coupland, Food Hydrocoll. 17, 55 (2003)

    Article  CAS  Google Scholar 

  28. S. Petruccelli, M.C. Anon, J. Agric. Food Chem. 43, 1762 (1995)

    Article  CAS  Google Scholar 

  29. K. Nishinari, Y. Fang, S. Guo, G.O. Phillips, Food Hydrocoll. 39, 301 (2014)

    Article  CAS  Google Scholar 

  30. S.R. Euston, S.R. Finnigan, R.L. Hirst, Food Hydrocoll. 15, 253 (2001)

    Article  CAS  Google Scholar 

  31. E. Dickinson, Food Hydrocoll. 23, 1473 (2009)

    Article  CAS  Google Scholar 

  32. L. Day, M. Golding, M. Xu, J. Keogh, P. Clifton, T.J. Wooster, Food Hydrocoll. 36, 151 (2014)

    Article  CAS  Google Scholar 

  33. D.K. Sarker, P.J. Wilde, D.C. Clark, Colloids Surfaces B Biointerfaces 3, 349 (1995)

    Article  CAS  Google Scholar 

  34. M. Coke, P.J. Wilde, E.J. Russell, D.C. Clark, J. Colloid Interface Sci. 138, 489 (1990)

    Article  CAS  Google Scholar 

  35. M. Cornec, A.R. Mackie, P.J. Wilde, D.C. Clark, Colloids Surfaces A Physicochem. Eng. Asp. 114, 237 (1996)

    Article  CAS  Google Scholar 

  36. *,† Alan R. Mackie, † A. Patrick Gunning, ‡ Luis A. Pugnaloni, ‡ Eric Dickinson, † and Peter J. Wilde, and V. J. Morris†, Langmuir 19, 6032 (2003)

  37. C.H. Tang, LWT - Food Sci. Technol. 41, 1380 (2008)

    Article  CAS  Google Scholar 

  38. Q. Zhao, M. Zhao, B. Yang, C. Cui, Food Chem. 116, 624 (2009)

    Article  CAS  Google Scholar 

  39. Q. Zhao, W. Kuang, Z. Long, M. Fang, D. Liu, B. Yang, M. Zhao, Food Chem. 141, 1834 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. Z. Wang, B. Tian, S. Karleen, A. Jan, V. Der Goot, J. Chen, Food Struct. 28, 100171 (2021)

    Article  CAS  Google Scholar 

  41. W. Chen, G. Liang, X. Li, Z. He, M. Zeng, D. Gao, F. Qin, H.D. Goff, J. Chen, Food Hydrocoll. 94, 279 (2019)

    Article  CAS  Google Scholar 

  42. W. Chen, G. Liang, X. Li, Z. He, M. Zen, D. Gao, F. Qin, H.D. Goff, J. Chen, Colloids Surfaces B Biointerfaces 177, 550 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. S. Damodaran, Anal. Biochem. 145, 200 (1985)

    Article  CAS  PubMed  Google Scholar 

  44. M. Li, T.C. Lee, J. Agric. Food Chem. 44, 1871 (1996)

    Article  CAS  Google Scholar 

  45. Q. Zhao, M. Zhao, J. Li, B. Yang, G. Su, C. Cui, Y. Jiang, Food Hydrocoll. 23, 2168 (2009)

    Article  CAS  Google Scholar 

  46. V. Nguyen, C.T.M. Duong, V. Vu, J. Food Eng. 163, 32 (2015)

    Article  CAS  Google Scholar 

  47. Q. Zhao, M. Zhao, J. Wang, C. Wang, B. Yang, J. Food Process Eng. 31, 671 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the independent research project program of the State Key Laboratory of Food Science and Technology, Jiangnan University (SKLF-ZZB-202012) and the Fundamental Research Funds for the Central Universities (JUSRP12052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Ethics declarations

Ethics Approval

We affirm that all work here has been conducted in an ethical manner and that it is original work for publication that has not been shared elsewhere. The patient consent and permission to reproduce do not apply to this work.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liang, G., Chen, W. et al. Effects of Soy Proteins and Hydrolysates on Fat Globule Coalescence and Whipping Properties of Recombined Low-Fat Whipped Cream. Food Biophysics 17, 324–334 (2022). https://doi.org/10.1007/s11483-021-09714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-021-09714-7

Keywords

Navigation