Skip to main content
Log in

Characterization of Flaxseed Gum/Rice Bran Protein Complex Coacervates

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Effect of protein to polysaccharide ratio (3:1, 6:1 & 9:1) and total biopolymer concentration (0.1, 0.2 & 0.4) on ζ-potential, particle size and particle distribution index (PDI) of complex coacervates were investigated. Furthermore, the physical, thermal and morphological characteristics of FG, RBP, RBP-FG coacervates and cross-linked RBP-FG coacervates by sodium tripolyphosphate were surveyed. Results showed that at low concentrations of FG (9:1 ratio) and a total concentration of 0.4, the ζ-potential of coacervate was close to zero and the coacervates had the largest size revealing the greatest interaction between biopolymers. SEM results showed a porous network structure which was varied from the RBP and FG. In contrast, the cross-linked coacervates showed a fine, uniform structure with less number of pores. FTIR findings revealed that the coacervate, due to the non-covalent interaction forces, was successfully developed. The fading of the pure peaks of protein and polysaccharide in XRD diffractogram indicated the interactions between the RBP and FG, as well as the structural changes of the complex. NaTPP cross-linked coacervate was indicated a reflection of slightly increased crystallinity. However, the dried powder of coacervates was generally amorphous. According to TGA and DSC results, cross-linked coacervates exhibited the highest thermal stability amongthe single biopolymers and non cross-linked coacervate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.-Q. Huang, Y.T. Sun, J.X. Xiao, J. Yang, Complex coacervation of soybean protein isolate and chitosan. Food Chem. 135(2), 534–539 (2012)

    Article  CAS  Google Scholar 

  2. H. Espinosa-Andrews, J.G. Báez-González, F. Cruz-Sosa, E.J. Vernon-Carter, Gum arabic− chitosan complex coacervation. Biomacromolecules 8(4), 1313–1318 (2007)

    Article  CAS  Google Scholar 

  3. Y. Lv, X. Zhang, H. Zhang, S. Abbas, E. Karangwa, The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocoll. 30(1), 323–332 (2013)

    Article  CAS  Google Scholar 

  4. Q. Ru, Y. Wang, J. Lee, Y. Ding, Q. Huang, Turbidity and rheological properties of bovine serum albumin/pectin coacervates: Effect of salt concentration and initial protein/polysaccharide ratio. Carbohydr. Polym. 88(3), 838–846 (2012)

    Article  CAS  Google Scholar 

  5. C.J. Souza et al., Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocoll. 30(1), 375–381 (2013)

    Article  CAS  Google Scholar 

  6. S. Liu, C. Elmer, N.H. Low, M.T. Nickerson, Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes. Food Res. Int. 43(2), 489–495 (2010)

    Article  CAS  Google Scholar 

  7. X. Wang, J. Lee, Y.W. Wang, Q. Huang, Composition and rheological properties of β-lactoglobulin/pectin coacervates: Effects of salt concentration and initial protein/polysaccharide ratio. Biomacromolecules 8(3), 992–997 (2007)

    Article  CAS  Google Scholar 

  8. C. Bengoechea, O.G. Jones, A. Guerrero, D.J. McClements, Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocoll. 25(5), 1227–1232 (2011)

    Article  CAS  Google Scholar 

  9. G.K. Bédié, S.L. Turgeon, J. Makhlouf, Formation of native whey protein isolate–low methoxyl pectin complexes as a matrix for hydro-soluble food ingredient entrapment in acidic foods. Food Hydrocoll. 22(5), 836–844 (2008)

    Article  Google Scholar 

  10. Barrow, C., et al., Spray drying and encapsulation of omega-3 oils, in Food enrichment with omega-3 fatty acids. 2013, Elsevier. p. 194–225

  11. H. Jiang, M. Zhang, S. McKnight, B. Adhikari, Microencapsulation of α-amylase by carrying out complex coacervation and drying in a single step using a novel three-fluid nozzle spray drying. Dry. Technol. 31(16), 1901–1910 (2013)

    Article  CAS  Google Scholar 

  12. M. Wang, N.S. Hettiarachchy, M. Qi, W. Burks, T. Siebenmorgen, Preparation and functional properties of rice bran protein isolate. J. Agric. Food Chem. 47(2), 411–416 (1999)

    Article  CAS  Google Scholar 

  13. H.-J. Zhang, H. Zhang, L. Wang, X.N. Guo, Preparation and functional properties of rice bran proteins from heat-stabilized defatted rice bran. Food Res. Int. 47(2), 359–363 (2012)

    Article  CAS  Google Scholar 

  14. S. Tang, N.S. Hettiarachchy, R. Horax, S. Eswaranandam, Physicochemical properties and functionality of rice bran protein hydrolyzate prepared from heat-stabilized defatted rice bran with the aid of enzymes. J. Food Sci. 68(1), 152–157 (2003)

    Article  CAS  Google Scholar 

  15. R.W. Fedeniuk, C.G. Biliaderis, Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage. J. Agric. Food Chem. 42(2), 240–247 (1994)

    Article  CAS  Google Scholar 

  16. W. Cui, G. Mazza, C. Biliaderis, Chemical structure, molecular size distributions, and rheological properties of flaxseed gum. J. Agric. Food Chem. 42(9), 1891–1895 (1994)

    Article  CAS  Google Scholar 

  17. H.-h. Chen, S.-y. XU, Z. WANG, Gel properties of flaxseed gum [J]. Journal of Food Science and Biotechnology 5, 002 (2006)

    Google Scholar 

  18. B.D. Oomah, E.O. Kenaschuk, W. Cui, G. Mazza, Variation in the composition of water-soluble polysaccharides in flaxseed. J. Agric. Food Chem. 43(6), 1484–1488 (1995)

    Article  CAS  Google Scholar 

  19. N. Fekri et al., Chemical analysis of flaxseed, sweet basil, dragon head and quince seed mucilages. Res J Biol Sci 3(2), 166–170 (2008)

    Google Scholar 

  20. S. Kumbar, A. Kulkarni, T. Aminabhavi, Crosslinked chitosan microspheres for encapsulation of diclofenac sodium: Effect of crosslinking agent. J. Microencapsul. 19(2), 173–180 (2002)

    Article  CAS  Google Scholar 

  21. T.K. Maji, M.R. Hussain, Microencapsulation of Zanthoxylum limonella oil (ZLO) in genipin crosslinked chitosan–gelatin complex for mosquito repellent application. J. Appl. Polym. Sci. 111(2), 779–785 (2009)

    CAS  Google Scholar 

  22. Y. Yuan, B.M. Chesnutt, G. Utturkar, W.O. Haggard, Y. Yang, J.L. Ong, J.D. Bumgardner, The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr. Polym. 68(3), 561–567 (2007)

    Article  CAS  Google Scholar 

  23. S.C. Fernandes, I.R.W.Z. de Oliveira, O. Fatibello-Filho, A. Spinelli, I.C. Vieira, Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate. Sensors Actuators B Chem. 133(1), 202–207 (2008)

    Article  CAS  Google Scholar 

  24. G.A. Morris, J. Castile, A. Smith, G.G. Adams, S.E. Harding, The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)–chitosan nanoparticles. Carbohydr. Polym. 84(4), 1430–1434 (2011)

    Article  CAS  Google Scholar 

  25. W. Cui, G. Mazza, B.D. Oomah, C.G. Biliaderis, Optimization of an aqueous extraction process for flaxseed gum by response surface methodology. LWT-Food Science and Technology 27(4), 363–369 (1994)

    Article  CAS  Google Scholar 

  26. A. Rafe, E. Vahedi, A.G. Hasan-Sarei, Rheology and microstructure of binary mixed gel of rice bran protein–whey: Effect of heating rate and whey addition. J. Sci. Food Agric. 96(11), 3890–3896 (2016)

    Article  CAS  Google Scholar 

  27. P.G. Chang, R. Gupta, Y.P. Timilsena, B. Adhikari, Optimisation of the complex coacervation between canola protein isolate and chitosan. J. Food Eng. 191, 58–66 (2016)

    Article  CAS  Google Scholar 

  28. E.d.S. Gulão et al., Complex coacervates obtained from lactoferrin and gum arabic: Formation and characterization. Food Res. Int. 65, 367–374 (2014)

  29. Y.P. Timilsena, B. Wang, R. Adhikari, B. Adhikari, Preparation and characterization of chia seed protein isolate–chia seed gum complex coacervates. Food Hydrocoll. 52, 554–563 (2016)

    Article  CAS  Google Scholar 

  30. C. Bengoechea, I. Peinado, D.J. McClements, Formation of protein nanoparticles by controlled heat treatment of lactoferrin: Factors affecting particle characteristics. Food Hydrocoll. 25(5), 1354–1360 (2011)

    Article  CAS  Google Scholar 

  31. E.d.S. Gulão et al., Complex coacervates obtained from peptide leucine and gum arabic: Formation and characterization. Food Chem. 194, 680–686 (2016)

  32. C.M. Rocha et al., Rheological and structural characterization of agar/whey proteins insoluble complexes. Carbohydr. Polym. 110, 345–353 (2014)

    Article  CAS  Google Scholar 

  33. Y. Lv, F. Yang, X. Li, X. Zhang, S. Abbas, Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocoll. 35, 305–314 (2014)

    Article  CAS  Google Scholar 

  34. Whitford, D., Proteins: structure and function. 2013: John Wiley & Sons

  35. E. Alpizar-Reyes, H. Carrillo-Navas, R. Romero-Romero, V. Varela-Guerrero, J. Alvarez-Ramírez, C. Pérez-Alonso, Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindus indica L.). Food Bioprod. Process. 101, 166–176 (2017)

    Article  CAS  Google Scholar 

  36. H.-H. Chen, S.-Y. Xu, Z. Wang, Interaction between flaxseed gum and meat protein. J. Food Eng. 80(4), 1051–1059 (2007)

    Article  CAS  Google Scholar 

  37. C. Mangavel, J. Barbot, Y. Popineau, J. Guéguen, Evolution of wheat gliadins conformation during film formation: A Fourier transform infrared study. J. Agric. Food Chem. 49(2), 867–872 (2001)

    Article  CAS  Google Scholar 

  38. A.P. Adebiyi, A.O. Adebiyi, Y. Hasegawa, T. Ogawa, K. Muramoto, Isolation and characterization of protein fractions from deoiled rice bran. Eur. Food Res. Technol. 228(3), 391–401 (2009)

    Article  CAS  Google Scholar 

  39. L. Zhou, Y. Yang, H. Ren, Y. Zhao, Z. Wang, F. Wu, Z. Xiao, Structural changes in rice bran protein upon different extrusion temperatures: A Raman spectroscopy study. Journal of Chemistry 2016, 1–8 (2016)

    CAS  Google Scholar 

  40. J. Kong, S. Yu, Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 39(8), 549–559 (2007)

    Article  CAS  Google Scholar 

  41. S.W. Cui, G.O. Phillips, B. Blackwell, J. Nikiforuk, Characterisation and properties of Acacia Senegal (L.) Willd. Var. senegal with enhanced properties (Acacia (sen) SUPERGUM™): Part 4. Spectroscopic characterisation of Acacia Senegal var. Senegal and Acacia (sen) SUPERGUM™ arabic. Food Hydrocoll. 21(3), 347–352 (2007)

    Article  CAS  Google Scholar 

  42. P. Kaushik, K. Dowling, S. McKnight, C.J. Barrow, B. Adhikari, Microencapsulation of flaxseed oil in flaxseed protein and flaxseed gum complex coacervates. Food Res. Int. 86, 1–8 (2016)

    Article  CAS  Google Scholar 

  43. S. Cakic, C. Lacnjevac, G. Nikolic, J. Stamenkovic, M. Rajkovic, M. Gligoric, M. Barac, Spectroscopic characteristics of highly selective manganese catalysis in acqueous polyurethane systems. Sensors 6(11), 1708–1720 (2006)

    Article  CAS  Google Scholar 

  44. Daoub, R.M., et al., Characterization and Functional Properties of some Natural Acacia Gums. Journal of the Saudi Society of Agricultural Sciences, 2016

  45. C. Sun, L. Dai, Y. Gao, Formation and characterization of the binary complex between zein and propylene glycol alginate at neutral pH. Food Hydrocoll. 64, 36–47 (2017)

    Article  CAS  Google Scholar 

  46. G. Davidov-Pardo, I.J. Joye, D.J. McClements, Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization. Food Hydrocoll. 45, 309–316 (2015)

    Article  CAS  Google Scholar 

  47. P. Gilsenan, R. Richardson, E. Morris, Associative and segregative interactions between gelatin and low-methoxy pectin: Part 1. Associative interactions in the absence of ca 2+. Food Hydrocoll. 17(6), 723–737 (2003)

    Article  CAS  Google Scholar 

  48. P. Guerrero, T. Garrido, I. Leceta, K. de la Caba, Films based on proteins and polysaccharides: Preparation and physical–chemical characterization. Eur. Polym. J. 49(11), 3713–3721 (2013)

    Article  CAS  Google Scholar 

  49. N. Devi, D. Hazarika, C. Deka, D.K. Kakati, Study of complex coacervation of gelatin a and sodium alginate for microencapsulation of olive oil. J. Macromol. Sci. A 49(11), 936–945 (2012)

    Article  CAS  Google Scholar 

  50. González-Martínez, D., et al., Characterization of a Novel Complex Coacervate Based on Whey Protein Isolate-Tamarind Seed Mucilage. Food hydrocolloids, 2017

  51. C. Butstraen, F. Salaün, Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydr. Polym. 99, 608–616 (2014)

    Article  CAS  Google Scholar 

  52. E. Bendit, A quantitative x-ray diffraction study of the alpha-beta transformation in wool keratin. Text. Res. J. 30(8), 547–555 (1960)

    Article  CAS  Google Scholar 

  53. J. Bamgbose et al., Interactions of cross-linked and uncross-linked chitosan hydrogels with surfactants for biomedical applications. IFE J. Sci. 16(3), 341–351 (2014)

    Google Scholar 

  54. Y. Luo, B. Zhang, M. Whent, L.(.L.). Yu, Q. Wang, Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids Surf. B: Biointerfaces 85(2), 145–152 (2011)

    Article  CAS  Google Scholar 

  55. Parveen, S., et al., Retraction notice to``Enhanced Antiproliferative Activity of Carboplatin loaded Chitosan-Alginate Nanoparticles in Retinoblastoma Cell Line”[Acta Biomaterialia 6 (2010) 3120–3131], 2010, Elsevier

  56. Sun, J., et al., Influence of various levels of flaxseed gum addition on the water-holding capacities of heat-induced porcine myofibrillar protein. J. Food Sci., 2011.76(3)

    Article  CAS  Google Scholar 

  57. R.I. Baeza, A.M. Pilosof, Calorimetric studies of thermal denaturation of β-lactoglobulin in the presence of polysaccharides. LWT-Food Science and Technology 35(5), 393–399 (2002)

    Article  CAS  Google Scholar 

  58. H. Zhang, Q. Luan, Q. Huang, H. Tang, F. Huang, W. Li, C. Wan, C. Liu, J. Xu, P. Guo, Q. Zhou, A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation. Carbohydr. Polym. 157, 1830–1836 (2017)

    Article  CAS  Google Scholar 

  59. E. Duhoranimana, E. Karangwa, L. Lai, X. Xu, J. Yu, S. Xia, X. Zhang, B. Muhoza, I. Habinshuti, Effect of sodium carboxymethyl cellulose on complex coacervates formation with gelatin: Coacervates characterization, stabilization and formation mechanism. Food Hydrocoll. 69, 111–120 (2017)

    Article  CAS  Google Scholar 

  60. L.S. Guinesi, E.T.G. Cavalheiro, The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim. Acta 444(2), 128–133 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rafe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanvand, E., Rafe, A. Characterization of Flaxseed Gum/Rice Bran Protein Complex Coacervates. Food Biophysics 13, 387–395 (2018). https://doi.org/10.1007/s11483-018-9544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-9544-5

Keywords

Navigation