Skip to main content
Log in

Effect of Water Content on the Glass Transition Temperature of Calcium Maltobionate and its Application to the Characterization of Non-Arrhenius Viscosity Behavior

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

To understand the fundamental physical properties of calcium maltobionate (MBCa), its water sorption isotherm, glass transition temperature (T g), and viscosity (η) were investigated and compared with those of maltobionic acid (MBH) and maltose. Although amorphous maltose crystalized at water activity (a w) higher than 0.43, MBCa and MBH maintained an amorphous state over the whole a w range. In addition, MBCa had a higher T g and greater resistance to water plasticizing than MBH and maltose. These properties of MBCa likely originate from the strong interaction between MBCa and water induced by electrostatic interactions. Moreover, the effects of temperature and water content on η of an aqueous MBCa solution were evaluated, and its behavior was described using a semi-empirical approach based on a combination of T g extrapolated by the Gordon-Taylor equation and a non-Arrhenius formula known as the Vogel–Fulcher–Tammann equation. This result will be useful for understating the effect of MBCa addition on the solution’s properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. J. Kluyver, J. de Ley, A. Rijven, The formation and consumption of lactobionic and maltobionic acids by pseudomonas species. Anton. Leeuw. 17, 1–14 (1951)

    Article  CAS  Google Scholar 

  2. A. Mirescu, U. Prüße, A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts. Appl. Catal. B 70, 644–652 (2007)

    Article  CAS  Google Scholar 

  3. B. A. Green, R. J. Yu, E. J. Van Scott, Clinical and cosmeceutical uses of hydroxyacids. Clin. Dermatol. 27, 495–501 (2009)

    Article  Google Scholar 

  4. J. M. Aguilera, J. M. del Valle, M. Karel, Caking phenomena in amorphous food powders. Trends Food Sci. Technol. 6, 149–155 (1995)

    Article  CAS  Google Scholar 

  5. S. Palzer, The effect of glass transition on the desired and undesired agglomeration of amorphous food powders. Chem. Eng. Sci. 60, 3959–3968 (2005)

    Article  CAS  Google Scholar 

  6. P. D. Orford, R. Parker, S. G. Ring, A. C. Smith, Effect of water as a dilutent on the glass transition behavior of malto-oligosaccharides, amylose and amylopectin. Int. J. Biol. Macromol. 11, 91–96 (1989)

    Article  CAS  Google Scholar 

  7. L. H. Mosquera, G. Moraga, P. F. de Córdoba, N. Martínez-Navarrete, Water content–water activity–glass transition temperature relationships of spray-dried borojó as related to changes in color and mechanical properties. Food Biophys. 6, 397–406 (2011)

    Article  Google Scholar 

  8. Y. Roos, Melting and glass transitions of low molecular weight carbohydrates. Carbohydr. Res. 238, 39–48 (1993)

    Article  CAS  Google Scholar 

  9. V. R. N. Telis, N. Martínez-Navarrete, Collapse and color changes in grapefruit juice powder as affected by water activity, glass transition, and addition of carbohydrate polymers. Food Biophys. 4, 83–93 (2009)

    Article  Google Scholar 

  10. F. Avaltroni, P. E. Bouquerand, V. Normand, Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydr. Polym. 58, 323–334 (2004)

    Article  CAS  Google Scholar 

  11. M. Le Meste, D. Champion, G. Roudaut, G. Blond, D. Simatos, Glass transition and food technology: a critical appraisal. J. Food Sci. 67, 2444–2458 (2002)

    Article  CAS  Google Scholar 

  12. D. S. Chaudhary, B. P. Adhikari, S. Kasapis, Glass-transition behavior of plasticized starch biopolymer system – a modified Gordon-Taylor approach. Food Hydrocoll. 25, 114–121 (2011)

    Article  CAS  Google Scholar 

  13. P. Zhu, S. Méjean, E. Blanchard, R. Jeantet, P. Schuck, Prediction of dry mass glass transition temperature and the spray drying behaviour of a concentrate using a desorption method. J. Food Eng. 105, 460–467 (2011)

    Article  Google Scholar 

  14. P. Stähle, V. Gaukel, H. P. Schuchmann, Influence of feed viscosity on the two-phase flow inside the exit orifice of an effervescent atomizer and on resulting spray characteristics. Food Res. Int. 77, 55–62 (2015)

    Article  Google Scholar 

  15. E. Maltini, D. Torreggiani, E. Venir, G. Bertolo, Water activity and the preservation of plant foods. Food Chem. 82, 79–86 (2003)

    Article  CAS  Google Scholar 

  16. I. Aguiló-Aguayo, R. Soliva-Fortuny, O. Martín-Belloso, Color and viscosity of watermelon juice treated by high-intensity pulsed electric fields or heat. Innov. Food Sci. Emerg. Technol. 11, 299–305 (2010)

    Article  Google Scholar 

  17. M. E. Elias, A. M. Elias, Trehalose + water fragile system: properties and glass transition. J. Mol. Liq. 83, 303–310 (1999)

    Article  CAS  Google Scholar 

  18. C. A. Angell, R. D. Bressel, J. L. Green, H. Kanno, M. Oguni, E. J. Sare, Liquid fragility and the glass transition in water and aqueous solutions. J. Food Eng. 22, 115–142 (1994)

    Article  Google Scholar 

  19. C. A. Angell, R. C. Stell, W. Sichina, Viscosity-temperature function for sorbitol from combined viscosity and differential scanning calorimetry studies. J. Phys. Chem. 86, 1540–1542 (1982)

    Article  CAS  Google Scholar 

  20. T. R. Noel, S. G. Ring, M. A. Whittam, Kinetic aspects of the glass transition behabior of maltose-water mixtures. Carbohydr. Res. 212, 109–117 (1991)

    Article  CAS  Google Scholar 

  21. D. P. Miller, J. J. de Pablo, H. R. Corti, Viscosity and glass transition temperature of aqueous mixture of trehalose with borax and sodium chloride. J. Phys. Chem. B 103, 10243–10249 (1999)

    Article  CAS  Google Scholar 

  22. K. Kawai, K. Fukami, P. Thanatuksorn, C. Viriyarattanasak, K. Kajiwara, Effects of moisture content, molecular weight, and crystallinity on the glass transition temperature of inulin. Carbohydr. Polym. 83, 934–939 (2011)

    Article  CAS  Google Scholar 

  23. B. C. Hancock, S. L. Shamblin, G. Zografi, Molecular mobility of amorphous pharmaceutical solids below their glass transition temperature. Pharm. Res. 12, 799–806 (1995)

    Article  CAS  Google Scholar 

  24. K. Kawai, Y. Hagura, Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer-plasticizer systems. Carbohydr. Polym. 89, 836–841 (2012)

    Article  CAS  Google Scholar 

  25. N. Potes, J. P. Kerry, Y. H. Roos, Additivity of water sorption, alpha-relaxations and crystallization inhibition in lactose–maltodextrin systems. Carbohydr. Polym. 89, 1050–1059 (2012)

    Article  CAS  Google Scholar 

  26. J. E. Zimeri, J. L. Kokini, The effect of moisture content ion the crystallinity and glass transition temperature of inulin. Carbohydr. Polym. 48, 299–304 (2002)

    Article  CAS  Google Scholar 

  27. J. E. Zimeri, J. L. Kokini, Phase transitions of inulin-waxy maize starch systems in limited moisture environments. Carbohydr. Polym. 51, 183–190 (2003)

    Article  CAS  Google Scholar 

  28. G. Balasubrahmanyam, A. K. Datta, Prevention of moisture migration in coated biscuit. J. Food Eng. 21, 235–244 (1994)

    Article  Google Scholar 

  29. E. Palou, A. López-Malo, A. Argaiz, Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks. J. Food Eng. 31, 85–93 (1997)

    Article  Google Scholar 

  30. S. S. Arogba, Effect of temperature on the moisture sorption isotherm of a biscuit containing processed mango (Mangifera indica) kernel flour. J. Food Eng. 48, 121–125 (2001)

    Article  Google Scholar 

  31. W. A. M. McMinn, D. J. McKee, T. R. A. Magee, Moisture adsorption behaviour of oatmeal biscuit and oat flakes. J. Food Eng. 79, 481–493 (2007)

    Article  Google Scholar 

  32. M. Z. Islam, Y. Kitamura, Y. Yamano, M. Kitamura, Effect of vacuum spray drying on the physicochemical properties, water sorption and glass transition phenomenon of orange juice powder. J. Food Eng. 169, 131–140 (2016)

    Article  CAS  Google Scholar 

  33. B. A. Bolton, J. R. Scherer, Raman spectra and water absorption of bovine serum albumin. J. Phys. Chem. 93, 7635–7640 (1989)

    Article  CAS  Google Scholar 

  34. P. P. Lewicki, Water as the determinant of food engineering properties. A review. J. Food Eng. 61, 483–495 (2004)

    Article  Google Scholar 

  35. G. P. Johari, A. Hallbrucker, E. Mayer, The glass–liquid transition of hyperquenched water. Nature 330, 552–553 (1987)

    Article  CAS  Google Scholar 

  36. S. Sastry, Going strong or falling apart? Nature 398, 467–470 (1999)

    Article  CAS  Google Scholar 

  37. P. D. Orford, R. Parker, S. G. Ring, Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight. Carbohydr. Res. 196, 11–18 (1990)

    Article  CAS  Google Scholar 

  38. T. R. Noel, R. Parker, S. G. Ring, Effect of molecular structure and water content on the dielectric relaxation behaviour of amorphous low molecular weight carbohydrates above and below their glass transition. Carbohydr. Res. 329, 839–845 (2000)

    Article  CAS  Google Scholar 

  39. T. R. Noel, R. Parker, S. G. Ring, A comparative study of the dielectric relaxation behaviour of glucose, maltose, and their mixtures with water in the liquid and glassy states. Carbohydr. Res. 282, 193–206 (1996)

    Article  CAS  Google Scholar 

  40. K. Imamura, K. Sakaura, K. Ohyama, A. Fukushima, H. Imanaka, T. Sakiyama, K. Nakanishi, Temperature scanning FTIR analysis of hydrogen bonding states of various saccharides in amorphous matrixes below and above their glass transition temperatures. J. Phys. Chem. B 110, 15094–15099 (2006)

    Article  CAS  Google Scholar 

  41. R. Surana, A. Pyne, R. Suryanarayanan, Effect of preparation method on physical properties of amorphous trehalose. Pharm. Res. 21, 1161–1176 (2004)

    Google Scholar 

  42. K. J. Crowley, G. Zografi, The use of thermal methods for predicting glass-former fragility. Thermochim. Acta 380, 79–93 (2001)

    Article  CAS  Google Scholar 

  43. L. Wang, V. Velikov, C. A. Angell, Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J. Chem. Phys. 117, 10184–10192 (2002)

    Article  CAS  Google Scholar 

  44. S. Kadoya, K. Fujii, K. Izutsu, E. Yonemochi, K. Terada, C. Yomota, T. Kawanishi, Freeze-drying of proteins with glass-forming oligosaccharide-derived sugar alcohols. Int. J. Pharm. 389, 107–113 (2010)

    Article  CAS  Google Scholar 

  45. M. Erber, G. Lee, Cryopellets based on amorphous organic calcium salts: production, characterization and their usage in coagulation diagnostics. Powder Technol. 280, 10–17 (2015)

    Article  CAS  Google Scholar 

  46. D. R. MacFarlane, J. Pringle, G. Annat, Reversible self-polymerizing high Tg lyoprotectants. Cryobiol. 45, 188–192 (2002)

    Article  CAS  Google Scholar 

  47. T. Matsuoka, T. Okada, K. Murai, S. Koda, H. Nomura, Dynamics and hydration of trehalose and maltose in concentrated solutions. J. Mol. Liq. 98–99, 319–329 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

A part of this work was financially supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research C: 15 K07453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kawai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukami, K., Kawai, K., Takeuchi, S. et al. Effect of Water Content on the Glass Transition Temperature of Calcium Maltobionate and its Application to the Characterization of Non-Arrhenius Viscosity Behavior. Food Biophysics 11, 410–416 (2016). https://doi.org/10.1007/s11483-016-9455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-016-9455-2

Keywords

Navigation