Skip to main content
Log in

Shear Pulses Nucleate Fibril Aggregation

  • Original Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

We have studied the effect of shear flow on the formation of amyloid fibrils of the whey protein β-lactoglobulin. β-Lactoglobulin aggregates into long, thin, and semiflexible fibrils upon heating at low pH and low ionic strength. Solutions with a protein concentration of 0.5% (w/w) were used, and the formation of fibrils was quantified with flow-induced birefringence, a proportional measure of the length concentration of the fibrils. From the decay of the birefringence after cessation of the flow, a length distribution could be fitted. Pulsed and continuous shear treatment of the samples resulted in a comparable enhancement of the fibrillar growth as compared to the fibrillar growth under quiescent conditions. This indicates that the onset of shear flow is the key parameter for the enhancement of fibrillar growth and not the continuous shear flow itself. This behavior is comparable to a nucleation-like process, during which preaggregates of the fibrils are induced during the onset of the flow and orthokinetic coagulation is absent. However, a difference was present in the length distribution between the pulsed and continuously sheared samples, which can be explained by the homogenizing effect of shear flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Kelly, Curr Opin Struct Biol 8, 101 (1998)

    Article  PubMed  CAS  Google Scholar 

  2. J.A. Hardy and G.A. Higgins, Science 256, 184 (1992)

    Article  PubMed  CAS  Google Scholar 

  3. M. Bucciantini et al., Nature 416, 507 (2002)

    Article  PubMed  CAS  Google Scholar 

  4. M. Langton and A.M. Hermansson, Food Hydrocoll 5, 523 (1992)

    Article  CAS  Google Scholar 

  5. W.S. Gosal, A.H. Clark, and S.B. Ross-Murphy, Biomacromolecules 5, 2420 (2004)

    Article  PubMed  CAS  Google Scholar 

  6. C. Veerman et al., Biomacromolecules 3, 869 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. C. Veerman et al., Int J Biol Macromol 31, 139 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. C. Veerman et al., Int J Biol Macromol 33, 121 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. D. Durand, J.C. Gimel, and T. Nicolai, Physica A 304, 253 (2002)

    Article  CAS  Google Scholar 

  10. L.N. Arnaudov and R. de Vries, Biophys J 88, 515 (2005)

    Article  PubMed  CAS  Google Scholar 

  11. S.S. Rogers et al., Macromolecules 38, 2948 (2005)

    Article  CAS  Google Scholar 

  12. W.S. Gosal et al., Langmuir 18, 7174 (2002)

    Article  CAS  Google Scholar 

  13. L.N. Arnaudov et al., Biomacromolecules 4, 1614 (2003)

    Article  PubMed  CAS  Google Scholar 

  14. G.M. Kavanagh, A.H. Clark, and S.B. Ross-Murphy, Int J Biol Macromol 28, 41 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. T. Lefevre and M. Subirade, Biopolymers 54, 578 (2000)

    Article  PubMed  CAS  Google Scholar 

  16. D. Hamada and C.M. Dobson, Protein Sci 11, 2417 (2002)

    Article  PubMed  CAS  Google Scholar 

  17. L. Nielsen et al., Biochemistry 40, 6036 (2001)

    Article  PubMed  CAS  Google Scholar 

  18. P.B. Stathopulos et al., Protein Sci 13, 3017 (2004)

    Article  PubMed  CAS  Google Scholar 

  19. W.E. Klunk, R.F. Jacob, and R.P. Mason, Anal Biochem 266, 66 (1999)

    Article  PubMed  CAS  Google Scholar 

  20. W.E. Klunk, R.F. Jacob, and R.P. Mason, In: Methods in Enzymology: Amyloids, Prions and other Protein Aggregates, edited by R. Wetzel (Academic Press, 1999)

  21. M. Doi and S.F. Edwards, J Chem Soc Faraday Trans 2 74, 918 (1978)

    Article  CAS  Google Scholar 

  22. G. Marrucci and N. Grizzuti, J Polym Sci, Polym Lett Ed 21, 83 (1983).

    Article  CAS  Google Scholar 

  23. G. Marrucci and N. Grizzuti, J Non-Newton Fluid Mech 14, 13 (1984)

    Article  Google Scholar 

  24. L.N. Arnaudov and R. De Vries, In: Kinetics of Fibrillar Aggregation of Food Proteins, Chapter 4 (Ph.D. thesis of Wageningen University) (2005)

  25. C.N. Nanev and A. Penkova, J Cryst Growth 232, 285 (2001).

    Article  CAS  Google Scholar 

  26. S.W. Young, J Am Chem Soc 33, 148 (1911)

    Article  CAS  Google Scholar 

  27. J.W. Mullin and K.D. Raven, Nature 195, 35 (1962)

    Article  CAS  Google Scholar 

  28. J.W. Mullin and K.D. Raven, Nature 190, 251 (1961)

    Article  Google Scholar 

  29. F. Oosawa and S. Asakura, Thermodynamics of the Polymerization of Protein (Academic Press, London, 1975)

    Google Scholar 

Download references

Acknowledgments

We thank H. Gruppen and J. Vereijken for the useful discussions about this work, and we also thank H. Schaink for his advice for the static light scattering experiments. We acknowledge the Dutch research school, VLAG, for their financial support of this research. We acknowledge funding from the BBSRC for SSR, and the European Commission for an IHP grant awarded to the Food Physics Group of Wageningen University for a Marie Curie Training Site Fellowship (contract HPMT-2000-00188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik van der Linden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akkermans, C., Venema, P., Rogers, S.S. et al. Shear Pulses Nucleate Fibril Aggregation. Food Biophysics 1, 144–150 (2006). https://doi.org/10.1007/s11483-006-9012-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-006-9012-5

Keywords

Navigation