Skip to main content

Advertisement

Log in

Baffle Induced Sensing Enhancement for Pressure and Refractive Index Based on Fano Resonance

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The sensitivity of plasma devices in pressure sensing has been undergoing significant advancements. However, the quantitative relationship between the actual deformation of the structure and the resulting optical transmission characteristics has not yet been investigated in depth. In this study, we propose a novel metal–insulator-metal (MIM) waveguide structure that exhibits a distinct transmission spectrum featuring a sharp Fano line. Notably, the incorporation of a baffle into the resonator induces the formation of a double Fano resonance, which occurs irrespective of the presence of external pressure. Remarkably, the second Fano resonance (FR2), effectively enhances the refractive index sensitivity of the system from 1400 nm/RIU to 1600 nm/RIU when the baffle is integrated into the pressure-free resonator. Furthermore, the introduction of a baffle into the pressurized cavity significantly improves the pressure sensitivity of the system. Specifically, the first Fano resonance (FR1) increases the pressure sensitivity from 2.40 nm/MPa to 6.88 nm/MPa, making it a multifunctional plasma device that functions as both an optical pressure sensor and a refractive index sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9(4):1663–1667

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Pang S, Huo Y, Xie Y, Hao L (2016) Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor. Opt Commun 381:409–413

    Article  ADS  CAS  Google Scholar 

  3. Wang S, Yu S, Zhao T, Wang Y, Shi X (2020) A nanosensor with ultra-high FOM based on tunable malleable multiple Fano resonances in a waveguide coupled isosceles triangular resonator. Opt Commun 465:125614

    Article  CAS  Google Scholar 

  4. Yang Q, Liu X, Guo F, Bai H, Zhang B, Li X, Tan Y, Zhang Z (2020) Multiple Fano resonance in MIM waveguide system with cross-shaped cavity. Optik 220:165163

    Article  ADS  CAS  Google Scholar 

  5. Hu F, Yi H, Zhou Z (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36(8):1500

    Article  ADS  PubMed  Google Scholar 

  6. Liu X, Li J, Chen J, Rohimah S, Tian H, Wang J (2021) Independently tunable triple Fano resonances based on MIM waveguide structure with a semi-ring cavity and its sensing characteristics. Opt Express 29(13):20829

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Rashid KS, Tathfif I, Yaseer AA, Hassan MdF, Sagor RH (2021) Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Express 29(23):37541

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zhu J, Li N (2020) MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity. Opt Express 28(14):19978

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wang M, Tian H, Liu X, Li J, Liu Y (2022) Multiparameter sensing based on tunable Fano resonances in MIM waveguide structure with square-ring and triangular cavities. Photonics 9(5):291

    Article  Google Scholar 

  10. Zhang J, Wang X, Zhu J, Chen T, Zhang L, Yang H, Tang C, Qi Y, Yu J (2023) Metal–insulator–metal waveguide structure coupled with T-type and ring resonators for independent and tunable multiple Fano resonance and refractive index sensing. Opt Commun 528:128993

    Article  CAS  Google Scholar 

  11. Fang Y, Wen K, Li Z, Wu B, Chen L, Zhou J, Zhou D (2019) Multiple Fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photonics J 11(4):1–8

    Article  CAS  Google Scholar 

  12. Butt MA (2020) Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio. Photon Lett PL 12(3):82

    Article  CAS  Google Scholar 

  13. Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4(6):e294–e294

    Article  ADS  CAS  Google Scholar 

  14. Wang J, Feng H, Zhang J, Liu C, Zhang Z, Fang D, Wang L, Gao Y (2022) Plasmonic band-stop MIM waveguide filter based on bilateral asymmetric equilateral triangular ring. Optik 265:169535

    Article  ADS  Google Scholar 

  15. Phua WK, Akimov Y, Wu L, Chu HS, Bai P, Danner A (2016) Highly efficient tunable and localized on-chip electrical plasmon source using protruded metal-insulator-metal structure. Opt Express 24(10):10663

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Qi K, Zhu Y, Sun H, Yu Y (2017) Metallic planar lens constructed by double-turn waveguides for sub-diffraction-limit focusing. Opt Express 25(18):21191

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Chen F, Yao D (2016) Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide. Opt Commun 369:72–78

    Article  ADS  CAS  Google Scholar 

  18. Khonina SN, Kazanskiy NL, Butt MA, Kaźmierczak A, Piramidowicz R (2021) Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO 2 gas. Opt Express 29(11):16584

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Al Mahmud R, Faruque MO, Sagor RH (2021) A highly sensitive plasmonic refractive index sensor based on triangular resonator. Opt Commun 483:126634

    Article  CAS  Google Scholar 

  20. Khani S, Hayati M (2021) An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct 156:106970

    Article  CAS  Google Scholar 

  21. Chen L, Liu Y, Yu Z, Wu D, Ma R, Zhang Y, Ye H (2016) Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt Express 24(9):9975

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Chen Z, Ma X, Duan Y, Li L, Zhang S, Wang Y, Yu Y, Hou Z (2023) Tunable electromagnetically induced absorption based on coupled-resonators in a compact plasmonic system. Opt Express 31(22):35697

    Article  ADS  PubMed  Google Scholar 

  23. Rohimah S, Tian H, Wang J, Chen J, Li J, Liu X, Cui J, Xu Q, Hao Y (2022) Fano resonance in the plasmonic structure of MIM waveguide with r-shaped resonator for refractive index sensor. Plasmonics 17(4):1681–1689

    Article  CAS  Google Scholar 

  24. Palizvan P, Olyaee S, Seifouri M (2018) An optical MIM pressure sensor based on a double square ring resonator. Photonic Sens 8(3):242–247

    Article  ADS  Google Scholar 

  25. Tathfif I, Yaseer AA, Rashid KS, Sagor RH (2021) Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt Express 29(20):32365

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Chen F, Yang WX (2022) Pressure sensor based on multiple Fano resonance in metal–insulator–metal waveguide coupled resonator structure. J Opt Soc Am B 39(7):1716

    Article  ADS  CAS  Google Scholar 

  27. Wu J, Lang P, Chen X, Zhang R (2016) A novel optical pressure sensor based on surface plasmon polariton resonator. J Mod Opt 63(3):219–223

    Article  ADS  CAS  Google Scholar 

  28. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  ADS  CAS  Google Scholar 

  29. Chai Z, Hu X, Zhu Y, Sun S, Yang H, Gong Q (2014) Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity. Advanced Optical Materials 2(4):320–325

    Article  CAS  Google Scholar 

  30. Chai Z, Hu X, Yang H, Gong Q (2017) Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite. Nanophotonics 6(1):329–339

    Article  CAS  Google Scholar 

  31. Qiao L, Zhang G, Wang Z, Fan G, Yan Y (2019) Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt Commun 433:144–149

    Article  ADS  CAS  Google Scholar 

  32. Alt H, Von Brentano P, Gräf H-D, Hofferbert R, Philipp M, Rehfeld H, Richter A, Schardt P (1996) Precision test of the Breit-Wigner formula on resonances in a superconducting microwave cavity. Phys Lett B 366(1–4):7–12

    Article  ADS  CAS  Google Scholar 

  33. Zhao T, Yu S (2018) Ultra-High sensitivity nanosensor based on multiple Fano resonance in the MIM coupled plasmonic resonator. Plasmonics 13(4):1115–1120

    Article  CAS  Google Scholar 

  34. Miyata M, Holsteen A, Nagasaki Y, Brongersma ML, Takahara J (2015) Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate. Nano Lett 15(8):5609–5616

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Funding

Fundamental Research Funds for the Central Universities (buctrc202143), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (No. KF202202), the National Natural Science Foundation of China (NSFC) (Grant No. 62175010, 12174037, 11974225, 12204030).

Author information

Authors and Affiliations

Authors

Contributions

M.X. wrote the main manuscript text and C.Z. examined the manuscript. W.Y and L.T. prepared figures 1-3. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhao Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 

Appendix 

As shown in Fig. 6, when a baffle with width a = 100 nm and height b = 100 nm-200 nm is added, the transmission spectrum generated by the system still maintains the combination pattern of Lorentz peak and Fano peak. The bottom of the baffle is confined to the top of the waveguide, and with the increase of the height b value to 300 nm, the Lorentz peak causes splitting, and the energy in the resonator moves and is redistributed. 

Fig. 6
figure 6

The transmission spectrum changes from nonexistent to existent

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, T., Wang, Y. et al. Baffle Induced Sensing Enhancement for Pressure and Refractive Index Based on Fano Resonance. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02262-z

Keywords

Navigation