Skip to main content
Log in

Highly Sensitive Multimode-Single-Mode-Multimode Optical Fiber SPR Refractive Index Sensor with GaSe Nanosheets

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Introducing a two-dimensional material Gallium selenide (GaSe) for the sensitization for the first time, a novel multimode-single-mode-multimode fiber surface plasmon resonance (SPR) sensor with the gold (Au)-GaSe structure was designed and fabricated. GaSe has ultrahigh carrier mobility and exhibits more excellent optical properties that can strengthen the surface electric field strength and increase the sensitivity significantly. The simulation model is constructed by the finite element method and the optimal film thicknesses are obtained. The simulation results show that the introduction of GaSe enhances the electric field strength on the gold film surface and has great potential to enable sensors with higher sensitivity. The experimental results indicate that when the thicknesses of both Au film and GaSe nanofilm are set to 50 nm, the sensitivity is the highest, 6167.97 nm/RIU with the refractive index (RI) range from 1.33303 to 1.37340, three times that of the Au film sensors, and the figure of merits (FOM) reaches 34.41 RIU−1. Stability tests demonstrate that the sensor has excellent stability within several hours. The proposed sensor has promising applications in the fields of biosensing and medical detection with its extremely high sensitivity and good stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Materials

No datasets were generated or analysed during the current study.

References

  1. Jabir JN, Areebi NA (2022) High sensitively of double-core surface plasmon resonance biosensor based on photonic crystal fiber. Opt Quant Electron 54:626. https://doi.org/10.1007/s11082-022-03950-y

    Article  CAS  Google Scholar 

  2. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12:213–220. https://doi.org/10.1016/0925-4005(93)80021-3

    Article  CAS  Google Scholar 

  3. Li M, Cushing SK, Wu N (2015) Plasmon-enhanced optical sensors: a review. Analyst 140:386–406. https://doi.org/10.1039/C4AN01079E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang SP, Liu LX, Mu CP et al (2023) An ultrasensitive SPR biosensor for RNA detection based on robust GeP5 nanosheets. J Colloid Interface Sci 651:938–947. https://doi.org/10.1016/j.jcis.2023.08.064

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Virk JK, Das S, Kaler RS, Singh H, Kundu T (2022) D-shape optical fiber probe dimension optimization for LSPR based bio-sensor. Opt Fiber Technol 71:102930. https://doi.org/10.1016/j.yofte.2022.102930

    Article  CAS  Google Scholar 

  6. Zhang SZ, Zhao YF, Zhang C et al (2018) In-situ growth of AuNPs on WS2@U-bent optical fiber for evanescent wave absorption sensor. Appl Surf Sci 441:1072–1078. https://doi.org/10.1016/j.apsusc.2018.02.081

    Article  ADS  CAS  Google Scholar 

  7. Xie TQ, He Y, Yang Y, Zhang H, Xu Y (2021) Highly sensitive surface plasmon resonance sensor based on graphene-coated U-shaped fiber. Plasmonics 16:205–213. https://doi.org/10.1007/s11468-020-01264-x

    Article  CAS  Google Scholar 

  8. Aghazadeh S, Vahed H (2023) Sensitivity enhancement of optical long-range SPR sensor based on new 2-D materials: BP/MoS2/Graphene. Plasmonics 18:2247–2261. https://doi.org/10.1007/s11468-023-01948-0

    Article  CAS  Google Scholar 

  9. Wang DD, Zhang Y, Tian JK et al (2023) D-Shaped photonic crystal fiber with graphene coating for terahertz polarization filtering and sensing applications. Opt Fiber Technol 79:103373. https://doi.org/10.1016/j.yofte.2023.103373

    Article  CAS  Google Scholar 

  10. Meshginqalam B, Ahmadi MT, Ismail R, Sabatyan A (2016) Graphene/graphene oxide-based ultrasensitive surface plasmon resonance biosensor. Plasmonics 12:1–7. https://doi.org/10.1007/s11468-016-0472-2

    Article  CAS  Google Scholar 

  11. Qian YZ, Wang Q, Zhang DY et al (2023) A high-performance long-range surface plasmon resonance sensor based on the co-modification of carbon nanotubes and gold nanorods. Opt Fiber Technol 80:103460. https://doi.org/10.1016/j.yofte.2023.103460

    Article  CAS  Google Scholar 

  12. Wang Q, Du NN, Zhao WM et al (2022) Highly sensitive U-shaped optical fiber refractometer based on Bi2O2Se-assisted surface plasmon resonance. IEEE Trans Instrum Meas 71:1–8. https://doi.org/10.1109/TIM.2021.3129871

    Article  Google Scholar 

  13. Carvalho I, Xavier R, Fim F et al (2023) A field-enhancement optical fiber SPR sensor using graphene, molybdenum disulfide, and zinc oxide. Plasmonics 18:1705–1713. https://doi.org/10.1007/s11468-023-01880-3

    Article  CAS  Google Scholar 

  14. Wang H, Zhang H, Dong J et al (2018) Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer. Photonics Res 6:485–491. https://doi.org/10.1007/s11468-022-01685-w

    Article  CAS  Google Scholar 

  15. Kaushik S, Tiwari UK, Pal SS, Sinha RK (2019) Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets. Biosens Bioelectron 126:501–509. https://doi.org/10.1016/j.bios.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  16. Hou JX, Xu Y, Sun SS et al (2023) Gold nanoparticles-decorated M13 phage SPR probe for dual detection of antigen biomarkers in serum. Sensors Actuators B Chem 374:132811. https://doi.org/10.1016/j.snb.2022.132811

    Article  CAS  Google Scholar 

  17. Wei W, Dai Y, Niu CW, Li X, Ma YD, Huang BB (2015) Electronic properties of two-dimensional van der Waals GaS/GaSe heterostructures. J Mater Chem C 3:11548–11554. https://doi.org/10.1039/C5TC02975A

    Article  CAS  Google Scholar 

  18. Yuan X, Tang L, Wang P et al (2015) Wafer-scale arrayed p-n junctions based on few-layer epitaxial GaTe. Nano Res 8:3332–3341. https://doi.org/10.1007/s12274-015-0833-8

    Article  CAS  Google Scholar 

  19. Lu YY, Guo CR, Yeh HL et al (2020) Multilayer GaSe/InSe heterointerface-based devices for charge transport and optoelectronics. ACS Appl Nano Mater 3:11769–11776. https://doi.org/10.1021/acsanm.0c02280

    Article  CAS  Google Scholar 

  20. Palepu J, Tiwari A, Sahatiya P, Kundu S, Kanungo S (2022) Effects of artificial stacking configurations and biaxial strain on the structural, electronic and transport properties of bilayer GaSe-a first principle study. Mater Sci Semicond Process 137:106366. https://doi.org/10.1016/j.mssp.2021.106236

    Article  CAS  Google Scholar 

  21. Ma YD, Dai Y, Guo M, Yu L, Huang BB (2013) Tunable electronic and dielectric behavior of GaS and GaSe monolayers. Phys Chem Chem Phys 15:7098–7105. https://doi.org/10.1039/C3CP50233C

    Article  CAS  PubMed  Google Scholar 

  22. Dey K, Nikhil V, Roy S (2023) Machine learning approach with higher accuracy for simultaneous measurement of the dual parameter by MSM fiber structure. Measurement 221:113426. https://doi.org/10.1016/j.measurement.2023.113426

    Article  Google Scholar 

  23. Hu HF, Song XW, Han Q et al (2020) High sensitivity fiber optic SPR refractive index sensor based on multimode-no-core-multimode structure. IEEE Sens J 20:2967–2975. https://doi.org/10.1109/JSEN.2019.2956559

    Article  ADS  CAS  Google Scholar 

  24. Verma RK, Gupta BD (2010) Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film. J Optic Soc Am A Optic Image Sci Vis 27:846–851. https://doi.org/10.1364/JOSAA.27.000846

    Article  ADS  CAS  Google Scholar 

  25. Jawad A, Arifuzzaman S, Anower MS et al (2023) Modeling and performance analysis of an advanced hybrid surface plasmon resonance (SPR) sensor employing indium tin oxide-phosphorene hetero structure. Plasmonics 18:1391–1401. https://doi.org/10.1007/s11468-023-01861-6

    Article  CAS  Google Scholar 

  26. Bassou A, Rajira A, Kanouny AE et al (2021) Optical properties of GaSe, characterization and simulation. Mater Today Proc 37:3789–3792. https://doi.org/10.1016/j.matpr.2020.07.622

    Article  CAS  Google Scholar 

  27. Mitsushio M, Miyashita K, Higo M (2006) Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sensors Actuators A Phys 125:296–303. https://doi.org/10.1016/j.sna.2005.08.019

    Article  CAS  Google Scholar 

  28. Łapiński M, Kozioł R, Syty P, Patela S, Sienkiewicz JE, Sadowski W, Kościelska B (2023) Tuning of the plasmon resonance location in Au nanostructures coated with a ultrathin film of Al2O3-optical measurements and FDTD simulations. Surf Sci 733:122289. https://doi.org/10.1016/j.susc.2023.122289

    Article  CAS  Google Scholar 

  29. Yin B, Wang Q, Chen LA, Yao RQ (2023) Highly sensitive fiber SPR sensor based on InSe nanosheets. Opt Fiber Technol 80:103450. https://doi.org/10.1016/j.yofte.2023.103450

    Article  CAS  Google Scholar 

  30. Nangare S, Patil P (2022) Chitosan mediated layer-by-layer assembly based graphene oxide decorated surface plasmon resonance biosensor for highly sensitive detection of β-amyloid. Int J Biol Macromol 214:568–582. https://doi.org/10.1016/j.ijbiomac.2022.06.129

    Article  CAS  PubMed  Google Scholar 

  31. Maurya P, Maurya S, Verma R (2022) Sensitivity enhancement of SPR based refractive index sensor in VIS-NIR region by using ZnS and PVP. Results Opt 8:100246. https://doi.org/10.1016/j.rio.2022.100246

    Article  Google Scholar 

  32. Mohamed ZEA, Taya SA, Almawgani AHM et al (2023) Fano resonance based on coupling between nanoring resonator and MIM waveguide for refractive index sensor. Plasmonics. https://doi.org/10.1007/s11468-023-02009-2

    Article  Google Scholar 

  33. Wang Q, Jiang X, Niu LY, Fan XC (2020) Enhanced sensitivity of bimetallic optical fiber SPR sensor based on MoS2 nanosheets. Opt Lasers Eng 128:105997. https://doi.org/10.1016/j.optlaseng.2019.105997

    Article  Google Scholar 

  34. Wang Q, Cong XW, Cheng Z et al (2023) Low dimensional nanostructure-assisted long-range surface plasmon resonance sensors with high figure of merit. IEEE Trans Nanobioscience 22:45–51. https://doi.org/10.1109/TNB.2022.3149513

    Article  CAS  PubMed  Google Scholar 

  35. Núñez-Cascajero A, Estéban Ó, Méndez JA, González-Herráez M, Naranjo FB (2016) Infrared SPR sensing with III-nitride dielectric layers. Sensors Actuators B Chem 223:768–773. https://doi.org/10.1016/j.snb.2015.10.020

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 62073068, the Fundamental Research Funds for the Central Universities under Grant N2204019, the Applied Basic Research Program Project of Liaoning Province under Grant 2023JH2/101300179, the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries under Grant 2018ZCX29, the Shenyang Science and Technology Plan Project under Grant 23-407-3-01, Postdoctoral Science Foundation of China under Grant 2023M740543, Natural Science Foundation of Hebei Province under Grant F2020501040, the Natural Science Foundation of Shandong Province under Grant ZR2020MF108 and ZR2020MD058, the National Training Program of Innovation and Entrepreneurship for Undergraduates under Grant 202310145068.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Jin-Da Liu, and all authors commented on previous versions of the manuscript. Conceptualization, writing—reviewing and editing were performed by Nuerguli Kari. Material preparation, data collection, and analysis were performed by Hong-Shen Liu, Wei-Shu Wang and Zi-Ming Xia. Resources and funding acquisition were performed by Qi Wang. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nuerguli Kari or Qi Wang.

Ethics declarations

Consent to Participate

The authors are willing to participate in the work presented in this manuscript.

Consent for Publication

The authors have given their consent to publish this work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JD., Kari, N., Liu, HS. et al. Highly Sensitive Multimode-Single-Mode-Multimode Optical Fiber SPR Refractive Index Sensor with GaSe Nanosheets. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02252-1

Keywords

Navigation