Skip to main content
Log in

Design of Ultra-Broadband Metamaterial Absorber from Visible to Infrared Region

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have developed an ultra-broadband metamaterial absorber (UBMA) based on impedance matching. The absorber of the UBMA has an absorption of more than 90% in the wavelength range of 300–4000 nm (absorption bandwidth of 3700 nm), which can cover the visible and infrared regions. When the absorption is greater than 95%, the absorption bandwidth of the UBMA can reach 3440 nm. The designed UMBA has polarization-insensitive and wide-angle absorption characteristics, and the average absorption of the transverse magnetic (TM) and transverse electric (TE) modes at 60° oblique incidence are 94.7% and 86.8%, respectively. The physical mechanism suggests that surface plasmon resonance, localized surface plasmon resonance, and cavity resonance interactions jointly dominate the broadband and high absorption characteristics. The ultra-broadband and high absorption absorber we have designed have potential applications in energy harvesting, thermoelectric applications, and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Zheng Y, Yi Z, Liu L et al (2023) Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays. Appl Therm Eng 230:120841

    Article  ADS  CAS  Google Scholar 

  2. Landy NI, Sajuyigbe S, Mock JJ et al (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Wu F, Shi P, Yi Z et al (2023) Ultra-broadband solar absorber and high-efficiency thermal emitter from uv to mid-infrared spectrum. Micromachines 14(5):985

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lai R, Shi P, Yi Z et al (2023) Triple-band surface plasmon resonance metamaterial absorber based on open-ended prohibited sign type monolayer graphene. Micromachines 14(5):953

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Yi Z, Wang X et al (2021) Dual band visible metamaterial absorbers based on four identical ring patches. Physica E 127:114526

    Article  CAS  Google Scholar 

  6. Wang Z, Li P, Cui L et al (2020) Integration of nanomaterials with nucleic acid amplification approaches for biosensing. TrAC Trends Anal Chem 129:115959

    Article  CAS  Google Scholar 

  7. Zhang H, Cheng Y, Chen F (2021) Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik 229:166300

    Article  ADS  CAS  Google Scholar 

  8. Cheng Y, Chen F, Luo H (2021) Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency. Nanoscale Res Lett 16(1):1–9

    Article  ADS  Google Scholar 

  9. Liu J, Chen W, Ma WZ et al (2020) Ultra-broadband infrared absorbers using iron thin layers. IEEE Access 8:43407–43412

    Article  Google Scholar 

  10. Zheng Z, Zheng Y, Luo Y et al (2022) A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys Chem Chem Phys 24(4):2527–2533

    Article  CAS  PubMed  Google Scholar 

  11. Li C, Xiao Z, Ling X et al (2019) Broadband visible metamaterial absorber based on a three-dimensional structure. Waves Random Complex Media 29(3):403–412

    Article  ADS  Google Scholar 

  12. Nejat M, Nozhat N (2019) Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene. IEEE Trans Nanotechnol 18:684–690

    Article  ADS  CAS  Google Scholar 

  13. Wu D, Liu C, Liu Y et al (2018) Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. RSC Adv 8(38):21054–21064

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X, Zhang Z, Feng H et al (2023) Ultra-broadband solar energy absorber based on Ti and TiN from visible to mid-infrared. Phys Scr 98(10):105526

    Article  ADS  Google Scholar 

  15. Zhou J, Liu Z, Liu G et al (2020) Ultra-broadband solar absorbers for high-efficiency thermophotovoltaics. Opt Express 28(24):36476–36486

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Zhu L, Wang Y, Xiong G et al (2018) Design and absorption characteristics of broadband nano-metamaterial solar absorber. Acta Optica Sinica 37(9):0923001

    Article  Google Scholar 

  17. Hoa NTQ, Lam PH, Tung PD et al (2019) Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region. IEEE Photonics J 11(1):1–8

    Article  Google Scholar 

  18. Liu Z, Liu G, Huang Z et al (2018) Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol Energy Mater Sol Cells 179:346–352

    Article  CAS  Google Scholar 

  19. Liu G, Liu X, Chen J et al (2019) Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters. Sol Energy Mater Sol Cells 190:20–29

    Article  CAS  Google Scholar 

  20. Sun C, Liu H, Yang B et al (2023) An ultra-broadband and wide-angle absorber based on a TiN metamaterial for solar harvesting. Phys Chem Chem Phys 25(1):806–812

    Article  CAS  Google Scholar 

  21. Li Y, Liu Z, Zhang H et al (2019) Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt Express 27(8):11809–11818

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Mehrabi S, Rezaei MH, Zarifkar A (2019) Ultra-broadband solar absorber based on multi-layer TiN/TiO 2 structure with near-unity absorption. JOSA B 36(9):2602–2609

    Article  ADS  CAS  Google Scholar 

  23. Pan YZ, Li YC, Chen F et al (2023) Ultra-broadband solar absorber based on TiN metamaterial from visible light to mid-infrared. JOSA B 40(12):3057–3064

    Article  CAS  Google Scholar 

  24. Zhang H, Cao Y, Feng Y, et al (2023) Efficient solar energy absorber based on titanium nitride metamaterial. Plasmonics 18(6):2187–2194

  25. Palik ED (1998) Handbook of Optical Constants of Solids (Academic Press). https://doi.org/10.1080/716099804a

  26. Bilal RMH, Baqir MA, Hameed M et al (2022) Triangular metallic ring-shaped broadband polarization-insensitive and wide-angle metamaterial absorber for visible regime. JOSA A 39(1):136–142

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Zhou F, Qin F, Yi Z et al (2021) Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys Chem Chem Phys 23(31):17041–17048

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Xuan X, Wu S et al (2022) Reverse design of metamaterial absorbers based on an equivalent circuit. Phys Chem Chem Phys 24(34):20390–20399

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the University Natural Science Foundation of Anhui Province (2023AH051543), the Anhui Province Key Laboratory of Simulation and Design for Electronic Information System (Hefei Normal University)(2023ZDSYS09), and the Research Project of Huainan Normal University, China (2023XJYB007, 2023HX143, 2023XS004).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have participated in conceiving the idea, designing and simulating the structure, obtaining the results, and revising process. Material preparation, data collection, and analysis were performed by Xiu Li, Xiao-Man Chen, Shen-Bing Wu, and Yang Wang. The first draft of the manuscript was written by Xiu Li and Yang Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shen-Bing Wu or Yang Wang.

Ethics declarations

Ethics Approval

All authors accepted.

Consent to Participate

All authors accepted.

Consent for Publication

All authors accepted.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, XM., Wu, SB. et al. Design of Ultra-Broadband Metamaterial Absorber from Visible to Infrared Region. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02245-0

Keywords

Navigation