Skip to main content

Advertisement

Log in

An Understanding for the Synthesis of Metal NPs to Photocatalysis to Toxicity

  • REVIEW
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Metal nanoparticles (MNPs) have been the subject of intense study in a wide variety of disciplines for quite some time now. Various metal nanoparticles like silver and gold, copper, nickel, palladium have been synthesized using plant extracts, flower seeds, polyvinylpyrrolidone, PEG200, egg-white, cellulose nanocrystals, nanosheets, fruit extracts, frankincense resin, and numerous other chemicals and biological methods. In addition to the synthesis, we have covered the nanoparticle’s size, characterization techniques, and toxicity in various organisms, all of which have been accompanied by concentration and LC50 values. Photocatalysis includes a change of the rate at which a photoreaction takes place by the addition of substances (catalysts) that are involved in the chemical reaction without getting used up. The photocatalytic degradation of the dyes is influenced by the size, shape, and surface of the metal nanoparticles, allowing for reaction stability and the formation of specific products with more efficiency. Metal nanoparticles is the focus of investigations into their hazardous effects on many organisms and cell lines. Synthesis and applications of metal nanoparticles are discussed in this review and their toxicity is also elaborated have been the subject of this review. The obstacles for metal NPs are toxicity and long-term behavior in the environment and the potential benefits are removal of contaminants, controlled drug delivery, and others.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

It is a review manuscript and has the copyright for the figures used.

Abbreviations

NPs:

Nanoparticles

XRD:

X-ray diffraction

HRTEM:

High-resolution transmission electron microscopy

UV-Vis:

Ultraviolet-visible

FT-IR:

Fourier transform infrared

DLS:

Dynamic light scattering

HE-SEM:

High-energy scanning electron microscopy

SAED:

Selected area electron diffraction

EDAX:

Energy dispersive X-ray analysis

AAS:

Atomic absorption spectroscopy

Temp.:

Temperature

Conc.:

Concentration

LC:

Lethal concentration

nm:

Nanometer

min:

Minutes

CR:

Congo red

MB:

Methylene blue

MG:

Malachite green

MO:

Methyl orange

RhB:

Rhodamine B

References

  1. Nur ASM, Sultana M, Mondal A, Islam S, Robel FN, Islam A et al (2022) A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV-vis irradiation. J Water Proc Eng 47:102728. https://doi.org/10.1016/j.jwpe.2022.102728

  2. Shah P, Unnarkat A, Patel F, Shah M, Shah P (2022) A comprehensive review on spinel based novel catalysts for visible light assisted dye degradation. Process Saf Environ Prot 161:703–722. https://doi.org/10.1016/j.psep.2022.03.030

    Article  CAS  Google Scholar 

  3. Xie K, Fang J, Li L, Deng J, Chen F (2022) Progress of graphite carbon nitride with different dimensions in the photocatalytic degradation of dyes: A review. J Alloy Compd 901:163589. https://doi.org/10.1016/j.jallcom.2021.163589

    Article  CAS  Google Scholar 

  4. Waghchaure RH (2022) Photocatalytic degradation of methylene blue, Rhodamine B, methyl orange and eriochrome black T dyes by modified Zno nanocatalysts: a concise review. SSRN Electron J 143:109764. https://doi.org/10.2139/ssrn.4100219

    Article  CAS  Google Scholar 

  5. Dihom HR, Al-Shaibani MM, Radin Mohamed RMS, Al-Gheethi AA, Sharma A, Bin KMH (2022) Photocatalytic degradation of disperse azo dyes in textile wastewater using green zinc oxide nanoparticles synthesized in plant extract: a critical review. J Water Proc Eng 47:102705. https://doi.org/10.1016/j.jwpe.2022.102705

  6. Ali M, Naghizadeh A, Amiri O, Shirzadi-ahodashti M (2020) Bioorganic chemistry green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract ( CP -AgNPs ) for organic pollution dyes degradation and antibacterial application. Bioorg Chem 94:103425. https://doi.org/10.1016/j.bioorg.2019.103425

    Article  CAS  Google Scholar 

  7. Jan H, Zaman G, Usman H, Ansir R, Drouet S, Gigliolo-Guivarc’h N, et al (2021) Biogenically proficient synthesis and characterization of silver nanoparticles (Ag-NPs) employing aqueous extract of Aquilegia pubiflora along with their in vitro antimicrobial, anti-cancer and other biological applications. J Market Res 15:950–968. https://doi.org/10.1016/j.jmrt.2021.08.048

    Article  CAS  Google Scholar 

  8. Hassan KT, Ibraheem IJ, Hassan OM, Obaid AS, Ali HH, Salih TA et al (2021) Facile green synthesis of Ag/AgCl nanoparticles derived from Chara algae extract and evaluating their antibacterial activity and synergistic effect with antibiotics. J Environ Chem Eng 9:105359. https://doi.org/10.1016/j.jece.2021.105359

    Article  CAS  Google Scholar 

  9. Ghoshal G, Singh M (2022) Characterization of silver nano-particles synthesized using fenugreek leave extract and its antibacterial activity. Mater Sci Energy Technol 5:22–29. https://doi.org/10.1016/j.mset.2021.10.001

  10. Din MI, Nabi AG, Rani A, Aihetasham A, Mukhtar M (2018) Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: catalytic and antimicrobial potentials. Environ Nanotechnol Monit Manage 9:29–36. https://doi.org/10.1016/j.enmm.2017.11.005

    Article  Google Scholar 

  11. Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM (2020) Rosmarinus officinalis directed palladium nanoparticle synthesis: investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Adv Powder Technol 31:1402–1411. https://doi.org/10.1016/j.apt.2020.01.024

    Article  CAS  Google Scholar 

  12. Sharaf Zeebaree SY, Zeebaree AYS (2019) Synthesis of copper nanoparticles as oxidising catalysts for multi-component reactions for synthesis of 1,3,4- thiadiazole derivatives at ambient temperature. Sustain Chem Pharm 13:100155. https://doi.org/10.1016/j.scp.2019.100155

  13. Singh H, Du J, Singh P, Yi TH (2018) Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif Cells Nanomed Biotechnol 46:1163–1170. https://doi.org/10.1080/21691401.2017.1362417

  14. Jose PA, Sankarganesh M, Raja JD, Senthilkumar GS (2020) Synthesis of methoxy substituted pyrimidine derivative imine stabilized copper nanoparticles in organic phase and its biological evaluation. J Mol Liq 305:112821. https://doi.org/10.1016/j.molliq.2020.112821

    Article  CAS  Google Scholar 

  15. Yan X, Da ZW, Hu QT, Liu J, Li T, Liu Y et al (2019) Defects-rich nickel nanoparticles grown on nickel foam as integrated electrodes for electrocatalytic oxidation of urea. Int J Hydrogen Energy 44:27664–27670. https://doi.org/10.1016/j.ijhydene.2019.09.004

    Article  CAS  Google Scholar 

  16. Jia K, Wang P, Yuan L, Zhou X, Chen W, Liu X (2015) Facile synthesis of luminescent silver nanoparticles and fluorescence interactions with blue-emitting polyarylene ether nitrile. J Mater Chem C 3:3522–3529. https://doi.org/10.1039/c4tc02850c

    Article  CAS  Google Scholar 

  17. Pandey PC, Singh R, Pandey Y (2015) Controlled synthesis of functional Ag, Ag-Au/Au-Ag nanoparticles and their Prussian blue nanocomposites for bioanalytical applications. RSC Adv 5:49671–49679. https://doi.org/10.1039/c5ra06251a

    Article  CAS  Google Scholar 

  18. Kannappan L, Rajmohan R, Edwin P (2021) Synthesis of Au nanoparticles using magnetite cored polyamine dendrimer template and its green catalysis for selective oxidation of alcohols. Mater Lett 301:130257. https://doi.org/10.1016/j.matlet.2021.130257

    Article  CAS  Google Scholar 

  19. Luo Z, Wang N, Pei X, Dai T, Zhao Z, Chen C et al (2021) Facile one-pot synthesis of superfine palladium nanoparticles on polydopamine-functionalized carbon nanotubes as a nanocatalyst for the Heck reaction. J Mater Sci Technol 82:197–206. https://doi.org/10.1016/j.jmst.2020.12.035

    Article  CAS  Google Scholar 

  20. Gao P, Xiao Y, Dong Z, Pan H, Wang W (2020) Facile synthesis of palladium nanoparticles supported on urea-based porous organic polymers and its catalytic properties in Suzuki-Miyaura coupling. Journal of Saudi Chemical Society, King Saud University 24:282–287. https://doi.org/10.1016/j.jscs.2019.11.002

    Article  CAS  Google Scholar 

  21. Adwin Jose P, Sankarganesh M, Dhaveethu Raja J, Senthilkumar GS, Nandini Asha R, Raja SJ et al (2021) Bio-inspired nickel nanoparticles of pyrimidine-Schiff base: In vitro anticancer, BSA and DNA interactions, molecular docking and antioxidant studies. J Biomol Struct Dyn 40:10715–10729. https://doi.org/10.1080/07391102.2021.1947382

    Article  PubMed  CAS  Google Scholar 

  22. Shivani GA (2021) Nanoscale zero valent nickel: synthesis and spectral studies of interactions with different surfactants and solvents. Smart Science 9:275–282. https://doi.org/10.1080/23080477.2021.1934263

    Article  Google Scholar 

  23. Zeynizadeh B, Karami S (2019) Synthesis of Ni nanoparticles anchored on cellulose using different reducing agents and their applications towards reduction of 4-nitrophenol. Polyhedron 166:196–202. https://doi.org/10.1016/j.poly.2019.03.056

    Article  CAS  Google Scholar 

  24. Rajivgandhi GN, Chackaravarthi G, Ramachandran G, Manoharan N, Ragunathan R, Siddiqi MZ et al (2022) Synthesis of silver nanoparticle (Ag NPs) using phytochemical rich medicinal plant Lonicera japonica for improve the cytotoxicity effect in cancer cells. Journal of King Saud University - Science 34:101798. https://doi.org/10.1016/j.jksus.2021.101798

    Article  Google Scholar 

  25. Razavi R, Amiri M, Alshamsi HA, Eslaminejad T, Salavati-Niasari M (2021) Green synthesis of Ag nanoparticles in oil-in-water nano-emulsion and evaluation of their antibacterial and cytotoxic properties as well as molecular docking. Arab J Chem 14:103323. https://doi.org/10.1016/j.arabjc.2021.103323

    Article  CAS  Google Scholar 

  26. Tamilarasi P, Meena P (2019) Green synthesis of silver nanoparticles (Ag NPs) using Gomphrena globosa (Globe amaranth) leaf extract and their characterization. Mater Today Proc 33:2209–2216. https://doi.org/10.1016/j.matpr.2020.04.025

  27. Caldas MPK, Martins TAG, de Moraes VT, Tenório JAS, Espinosa DCR (2021) Synthesis of Ag nanoparticles from waste printed circuit board. J Environ Chem Eng 9:106845. https://doi.org/10.1016/j.jece.2021.106845

    Article  CAS  Google Scholar 

  28. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983. https://doi.org/10.1039/c3ra44507k

    Article  CAS  Google Scholar 

  29. Nasiriboroumand M, Montazer M, Barani H (2018) Journal of Photochemistry & Photobiology, B : biology preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. J Photochem Photobiol, B 179:98–104. https://doi.org/10.1016/j.jphotobiol.2018.01.006

    Article  PubMed  CAS  Google Scholar 

  30. Saeed A, Thahira U (2019) Matter synthesis and characterization of stable silver nanoparticles, Ag-NPs : discussion on the applications of Ag-NPs as antimicrobial agents. Physica B Condens Matter 554:21–30. https://doi.org/10.1016/j.physb.2018.11.004

    Article  CAS  Google Scholar 

  31. Solaiman MA, Ali MA, Abdel-Moein NM, Mahmoud EA (2020) Synthesis of Ag-NPs developed by green-chemically method and evaluation of antioxidant activities and anti-inflammatory of synthesized nanoparticles against LPS-induced NO in RAW 264.7 macrophages. Biocatal Agric Biotechnol 29:101832. https://doi.org/10.1016/j.bcab.2020.101832

  32. Li W, Guo Y, McGill K, Zhang P (2010) A facile synthesis of Ag nanoparticles for mercury ion detection with high sensitivity and selectivity. New J Chem 34:1148–1152. https://doi.org/10.1039/b9nj00630c

    Article  CAS  Google Scholar 

  33. Singh J, Mehta A, Rawat M, Basu S (2018) Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-Nitrophenol reduction. J Environ Chem Eng 6:1468–1474. https://doi.org/10.1016/j.jece.2018.01.054

    Article  CAS  Google Scholar 

  34. Rafique M, Sadaf I, Tahir MB, Rafique MS, Nabi G (2019) Materials Science & Engineering C Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Mater Sci Eng, C 99:1313–1324. https://doi.org/10.1016/j.msec.2019.02.059

    Article  CAS  Google Scholar 

  35. Fatimah I, Hidayat H, Hernawan B, Husein S (2020) South African Journal of Chemical Engineering Ultrasound-assisted biosynthesis of silver and gold nanoparticles using Clitoria ternatea flower. S Afr J Chem Eng 34:97–106. https://doi.org/10.1016/j.sajce.2020.06.007

    Article  Google Scholar 

  36. Li Y, Yang D, Li P, Li Z (2022) Lignin as a multi-functional agent for the synthesis of Ag nanoparticles and its application in antibacterial coatings. J Market Res 17:3211–3220. https://doi.org/10.1016/j.jmrt.2022.02.049

    Article  CAS  Google Scholar 

  37. Imran M, Hussain S, Mehmood K, Saeed Z, Parvaiz M, Younas U et al (2021) Optimization of ecofriendly synthesis of Ag nanoparticles by Linum usitatissimum hydrogel using response surface methodology and its biological applications. Mater Today Commun 29:102789. https://doi.org/10.1016/j.mtcomm.2021.102789

  38. Nazari N, Jookar Kashi F (2021) A novel microbial synthesis of silver nanoparticles: its bioactivity, Ag/Ca-Alg beads as an effective catalyst for decolorization Disperse Blue 183 from textile industry effluent. Sep Purif Technol 259:118117. https://doi.org/10.1016/j.seppur.2020.118117

    Article  CAS  Google Scholar 

  39. Mohseni MS, Khalilzadeh MA, Mohseni M, Hargalani FZ, Getso MI, Raissi V et al (2020) Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-Starch nanocomposite and characterization of mechanical properties of the films. Biocatal Agric Biotechnol 25:101569. https://doi.org/10.1016/j.bcab.2020.101569

    Article  Google Scholar 

  40. Shui L, Zhang G, Hu B, Chen X, Jin M, Zhou G et al (2019) Photocatalytic one-step synthesis of Ag nanoparticles without reducing agent and their catalytic redox performance supported on carbon. J Energy Chem Sci Press 36:37–46. https://doi.org/10.1016/j.jechem.2019.04.006

  41. Bandi R, Alle M, Park CW, Han SY, Kwon GJ, Kim JC et al (2020) Rapid synchronous synthesis of Ag nanoparticles and Ag nanoparticles/holocellulose nanofibrils: Hg(II) detection and dye discoloration. Carbohyd Polym 240:116356. https://doi.org/10.1016/j.carbpol.2020.116356

    Article  CAS  Google Scholar 

  42. Silvestri D, Wacławek S, Venkateshaiah A, Krawczyk K, Sobel B, Padil VVT et al (2020) Synthesis of Ag nanoparticles by a chitosan-poly(3-hydroxybutyrate) polymer conjugate and their superb catalytic activity. Carbohyd Polym 232:115806. https://doi.org/10.1016/j.carbpol.2019.115806

    Article  CAS  Google Scholar 

  43. Vinay SP, Chandrasekhar N (2019) Facile green chemistry synthesis of Ag nanoparticles using Areca Catechu extracts for the antimicrobial activity and photocatalytic degradation of methylene blue dye. Mater Today Proc 9:499–505. https://doi.org/10.1016/j.matpr.2018.10.368

  44. Li W, Xu X, Li W, Liu P, Zhao Y, Cen Q et al (2020) One-step synthesis of Ag nanoparticles for fabricating highly conductive patterns using infrared sintering. J Market Res 9:142–151. https://doi.org/10.1016/j.jmrt.2019.10.039

    Article  CAS  Google Scholar 

  45. Nishimoto M, Abe S, Yonezawa T (2018) Preparation of Ag nanoparticles using hydrogen peroxide as a reducing agent. R Soc Chem 42:14493–14501. https://doi.org/10.1039/c8nj01747f

  46. Velgosova O (2019) Synthesis of Ag nanoparticle using R. officinalis, U. dioica and V. vitis-idaea extracts. Mater Today 248:150–152. https://doi.org/10.1016/j.matlet.2019.04.027

    Article  CAS  Google Scholar 

  47. Devi LB, Mandal AB (2013) Self-assembly of Ag nanoparticles using hydroxypropyl cyclodextrin: synthesis, characterisation and application for the catalytic reduction of p-nitrophenol. RSC Adv 3:5238–5253. https://doi.org/10.1039/c3ra23014g

    Article  CAS  Google Scholar 

  48. Thiyagarajan K, Bharti VK, Tyagi S, Tyagi PK, Ahuja A, Kumar K et al (2018) Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application. RSC Adv 8:23213–23229. https://doi.org/10.1039/C8RA03649G

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sukweenadhi J, Irianti K, Avanti C, Kartini K, Jahan E, Yang D (2021) South African Journal of Chemical Engineering Scale-up of green synthesis and characterization of silver nanoparticles using ethanol extract of Plantago major L. leaf and its antibacterial potential. S Afr J Chem Eng 38:1–8. https://doi.org/10.1016/j.sajce.2021.06.008

    Article  Google Scholar 

  50. Kanniah P, Chelliah P, Thangapandi JR, Gnanadhas G, Mahendran V, Robert M (2021) Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. Int J Biol Macromol 189:18–33. https://doi.org/10.1016/j.ijbiomac.2021.08.056

    Article  PubMed  CAS  Google Scholar 

  51. Patil MP, Seong YA, Kim JO, Seo YB, Do KG (2021) Synthesis of silver nanoparticles using aqueous extract of Cuscuta japonica seeds and their antibacterial and antioxidant activities. Inorg Chem Commun 134:109035. https://doi.org/10.1016/j.inoche.2021.109035

    Article  CAS  Google Scholar 

  52. Chokkalingam M, Singh P, Huo Y, Soshnikova V, Ahn S, Kang J et al (2019) Facile synthesis of Au and Ag nanoparticles using fruit extract of Lycium chinense and their anticancer activity. J Drug Deliv Sci Technol 49:308–315. https://doi.org/10.1016/j.jddst.2018.11.025

  53. Singh J, Tripathi J, Sharma M, Nagar S, Sharma A (2021) Study of structural, optical properties and antibacterial effects of silver nanoparticles synthesized by green synthesis method. Mater Today Proc 46:2294–2297. https://doi.org/10.1016/j.matpr.2021.04.086

    Article  CAS  Google Scholar 

  54. Lokhande AC, Babar PT, Karade VC, Jang JS, Lokhande VC, Lee DJ et al (2019) A viable green route to produce Ag nanoparticles for antibacterial and electrochemical supercapacitor applications. Mater Today Chem 14:100181. https://doi.org/10.1016/j.mtchem.2019.07.003

  55. Jasrotia T, Chaudhary S, Kaushik A, Kumar R, Chaudhary GR (2020) Green chemistry-assisted synthesis of biocompatible Ag, Cu, and Fe2O3 nanoparticles. Mater Today Chem 15:100214. https://doi.org/10.1016/j.mtchem.2019.100214

  56. Shah MZ, Guan ZH, Din AU, Ali A, Rehman AU, Jan K et al (2021) Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-00296-5

    Article  CAS  Google Scholar 

  57. Wang D, Xue B, Wang L, Zhang Y, Liu L, Zhou Y (2021) Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci Rep 11:1–9. https://doi.org/10.1038/s41598-021-89854-5

    Article  CAS  Google Scholar 

  58. Magalhães Sousa D, Chiappim W, Leitão P, J, Lima JC, Ferreira I, (2020) Microwave synthesis of silver sulfide and silver nanoparticles: light and time influence. ACS Omega 5:12877–12881. https://doi.org/10.1021/acsomega.0c00656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H (2019) Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158:8–14. https://doi.org/10.1016/j.poly.2018.10.049

    Article  CAS  Google Scholar 

  60. Jalilian F, Chahardoli A, Sadrjavadi K, Fattahi A, Shokoohinia Y (2020) Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv Powder Technol 31:1323–1332. https://doi.org/10.1016/j.apt.2020.01.011

    Article  CAS  Google Scholar 

  61. Vijayaraghavan K, Nalini SPK, Prakash NU, Madhankumar D (2012) One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf B 94:114–117. https://doi.org/10.1016/j.colsurfb.2012.01.026

    Article  CAS  Google Scholar 

  62. Arunachalam R, Dhanasingh S, Kalimuthu B, Uthirappan M, Rose C, Mandal AB (2012) Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids Surf B 94:226–230. https://doi.org/10.1016/j.colsurfb.2012.01.040

    Article  CAS  Google Scholar 

  63. Ramesh AV, Rama D, Battu G, Basavaiah K (2018) South African Journal of Chemical Engineering a facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, antioxidant and antibacterial applications. S Afr J Chem Eng 26:25–34. https://doi.org/10.1016/j.sajce.2018.07.001

    Article  Google Scholar 

  64. Santhoshkumar J, Sowmya B, Kumar SV, Rajeshkumar S (2019) South African Journal of Chemical Engineering Toxicology evaluation and antidermatophytic activity of silver nanoparticles synthesized using leaf extract of Passi flora caerulea. S Afr J Chem Eng 29:17–23. https://doi.org/10.1016/j.sajce.2019.04.001

    Article  Google Scholar 

  65. Gomathi M, Prakasam A, Rajkumar PV, Rajeshkumar S, Chandrasekaran R (2020) South African Journal of Chemical Engineering Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. S Afr J Chem Eng 32:1–4. https://doi.org/10.1016/j.sajce.2019.11.005

    Article  Google Scholar 

  66. Kumar V, Singh S, Srivastava B, Bhadouria R (2019) Journal of Environmental Chemical Engineering Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti- in fl ammatory, antidiabetic and antibacterial activities. J Environ Chem Eng 7:103094. https://doi.org/10.1016/j.jece.2019.103094

    Article  CAS  Google Scholar 

  67. Singh P, Kim YJ, Singh H, Mathiyalagan R, Wang C, Yang DC (2015) Biosynthesis of anisotropic silver nanoparticles by bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. J Nanomater 2015:234741. https://doi.org/10.1155/2015/234741

    Article  CAS  Google Scholar 

  68. Soshnikova V, Kim YJ, Singh P, Huo Y, Markus J, Ahn S et al (2018) Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artif Cells Nanomed Biotechnol 46:108–117. https://doi.org/10.1080/21691401.2017.1296849

  69. Singh P, Ahn S, Kang JP, Veronika S, Huo Y, Singh H et al (2018) In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artif Cells Nanomed Biotechnol 46:2022–2032. https://doi.org/10.1080/21691401.2017.1408117

  70. Küünal S, Visnapuu M, Volubujeva O, Soares Rosario M, Rauwel P, Rauwel E (2019) Optimisation of plant mediated synthesis of silver nanoparticles by common weed Plantago major and their antimicrobial properties. IOP Conf Ser Mater Sci Eng 613:012003. https://doi.org/10.1088/1757-899X/613/1/012003

  71. Das RK, Bhuyan D (2019) Microwave-mediated green synthesis of gold and silver nanoparticles from fruit peel aqueous extract of Solanum melongena L. and study of antimicrobial property of silver nanoparticles. Nanotechnol Environ Eng 4:1–6. https://doi.org/10.1007/s41204-018-0052-0

  72. Kanniah P, Radhamani J, Chelliah P, Muthusamy N, Balasingh JJS, E, Reeta Thangapandi J, et al (2020) Green synthesis of multifaceted silver nanoparticles using the flower extract of Aerva lanata and evaluation of its biological and environmental applications. ChemistrySelect 5:2322–2331. https://doi.org/10.1002/slct.201903228

    Article  CAS  Google Scholar 

  73. Yap YH, Azmi AA, Mohd NK, Yong FSJ, Kan SY, Thirmizir MZA et al (2020) Green synthesis of silver nanoparticle using water extract of onion peel and application in the acetylation reaction. Arab J Sci Eng 45:4797–4807. https://doi.org/10.1007/s13369-020-04595-3

    Article  CAS  Google Scholar 

  74. Salavati-niasari M (2022) Catechin mediated green synthesis of Au nanoparticles : Experimental and theoretical approaches to the determination HOMO-LUMO energy gap and reactivity indexes for the. Arab J Chem 15:103758. https://doi.org/10.1016/j.arabjc.2022.103758

    Article  CAS  Google Scholar 

  75. Alikhani N, Hekmati M, Karmakar B, Veisi H (2022) Green synthesis of gold nanoparticles (Au NPs) using Rosa canina fruit extractand evaluation of its catalytic activity in the degradation of organic dye pollutants of water. Inorg Chem Commun 139:109351. https://doi.org/10.1016/j.inoche.2022.109351

    Article  CAS  Google Scholar 

  76. Zhao P, El-kott A, Ahmed AE, Khames A, Zein MA (2021) Green synthesis of gold nanoparticles (Au NPs) using Tribulus terrestris extract: Investigation of its catalytic activity in the oxidation of sulfides to sulfoxides and study of its anti-acute leukemia activity. Inorg Chem Commun 131:108781. https://doi.org/10.1016/j.inoche.2021.108781

    Article  CAS  Google Scholar 

  77. Elemike EE, Onwudiwe DC, Nundkumar N, Singh M, Iyekowa O (2019) Green synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Stigmaphyllon ovatum leaf extract and their in vitro anticancer potential. Mater Lett 243:148–152. https://doi.org/10.1016/j.matlet.2019.02.049

    Article  CAS  Google Scholar 

  78. Krajczewski J, Kȩdziora M, Kołataj K, Kudelski A (2019) Improved synthesis of concave cubic gold nanoparticles and their applications for Raman analysis of surfaces. RSC Adv 9:18609–18618. https://doi.org/10.1039/c9ra03012c

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Mangaiyarkarasi R, Sivaranjini B, Umadevi S (2019) Facile synthesis of gold nanoparticles capped with an ammonium-based chiral ionic liquid crystal. Liq Cryst 46:584–593. https://doi.org/10.1080/02678292.2018.1513170

    Article  CAS  Google Scholar 

  80. Chen R, Chen F, Sun M, Zhang R, Wu S, Meng C (2021) Controllable synthesis and antioxidant activity of gold nanoparticles using chlorogenic acid. Inorg Nano-Met Chem 52:1345–1351. https://doi.org/10.1080/24701556.2021.1952242

    Article  CAS  Google Scholar 

  81. Yazgan I, Osonga FJ, Miller RM, Kariuki VM, Zhang J, Feng J et al (2021) Greener one-pot synthesis of gold nanoparticle glycoconjugates using functionalized sugars. ACS Agric Sci Technol 1:379–389. https://doi.org/10.1021/acsagscitech.1c00093

  82. Elliott CN, Becerra MC, Bennett JC, Graham L, Silvero CMJ, Hallett-Tapley GL (2021) Facile synthesis of antibiotic-functionalized gold nanoparticles for colorimetric bacterial detection. RSC Adv 11:14161–14168. https://doi.org/10.1039/d1ra01316e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Su L, Xiong Y, Chen Z, Duan Z, Luo Y, Zhu D (2019) Sensors and Actuators B : Chemical MoO 3 nanosheet-assisted photochemical reduction synthesis of Au nanoparticles for surface-enhanced Raman scattering substrates. Sens Actuators B Chem 279:320–326. https://doi.org/10.1016/j.snb.2018.10.008

    Article  CAS  Google Scholar 

  84. Asnag GM, Oraby AH, Abdelghany AM (2019) Green synthesis of gold nanoparticles and its effect on the optical, thermal and electrical properties of carboxymethyl cellulose. Compos B Eng 172:436–446. https://doi.org/10.1016/j.compositesb.2019.05.044

    Article  CAS  Google Scholar 

  85. Yuan CG, Huo C, Yu S, Gui B (2017) Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity. Physica E 85:19–26. https://doi.org/10.1016/j.physe.2016.08.010

    Article  CAS  Google Scholar 

  86. Trejo-carbajal N, Guerrero AL, Vargas-ramírez M, García-serrano J (2022) One-step synthesis and stabilization of Au, Ag and Au-Ag nanoparticles with an ion-exchange polymer contained amide and carboxylic acid functional groups. Colloids Surf A 647:129069. https://doi.org/10.1016/j.colsurfa.2022.129069

  87. Sun L, Zhu J, Zhang H, Dou B, Su W (2019) Facile synthesis of Au nanoparticles with different shapes in a soluble starch-hydroquinone system and their SERS activity. Mater Lett 255:126502. https://doi.org/10.1016/j.matlet.2019.07.131

    Article  CAS  Google Scholar 

  88. Koyuncu U, Can B, Alt A, Arsu N (2019) In-situ photochemical synthesis of Au nanoparticles in polymer matrix with one-component thioxanthone disul fi de for detection of benzene, toluene and xylene vapours. Prog Org Coat 132:125–131. https://doi.org/10.1016/j.porgcoat.2019.03.045

    Article  CAS  Google Scholar 

  89. Yang D, Fan R, Luo F, Chen Z, Gerson AR (2021) Facile and green fabrication of efficient Au nanoparticles catalysts using plant extract via a mesoporous silica-assisted strategy. Colloids Surf A 621:126580. https://doi.org/10.1016/j.colsurfa.2021.126580

  90. Chen J, Ding J, Li D, Wang Y, Wu Y, Yang X et al (2022) Facile preparation of Au nanoparticles mediated by Foeniculum Vulgare aqueous extract and investigation of the anti-human breast carcinoma effects. Arab J Chem 15:103479. https://doi.org/10.1016/j.arabjc.2021.103479

  91. Ghazy OA, Saleh HH, Shehata MM, Hosni HM, Ali ZI (2022) Electron beam radiation induced solid-state synthesis of gold nanoparticles in polyvinyl alcohol films and their Physico-chemical properties. Radiat Phys Chem 191:109848. https://doi.org/10.1016/j.radphyschem.2021.109848

    Article  CAS  Google Scholar 

  92. Kyzioł A, Łukasiewicz S, Sebastian V, Kuśtrowski P, Kozieł M, Majda D et al (2021) Towards plant-mediated chemistry—Au nanoparticles obtained using aqueous extract of Rosa damascena and their biological activity in vitro. J Inorg Biochem 214:111300. https://doi.org/10.1016/j.jinorgbio.2020.111300

    Article  PubMed  CAS  Google Scholar 

  93. Alle M, Lee SH, Kim JC (2020) Ultrafast synthesis of gold nanoparticles on cellulose nanocrystals via microwave irradiation and their dyes-degradation catalytic activity. J Mater Sci Technol 41:168–177. https://doi.org/10.1016/j.jmst.2019.11.003

    Article  CAS  Google Scholar 

  94. Nagalingam M, Kalpana VN, Rajeshwari VD, Panneerselvam A (2018) Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera bettzickiana. Biotechnol Rep 19:e00268. https://doi.org/10.1016/j.btre.2018.e00268

  95. Yazdani S, Daneshkhah A, Diwate A, Patel H, Smith J, Reul O et al (2021) Model for gold nanoparticle synthesis : effect of pH and reaction time. ACS Omega 6:16847–16853. https://doi.org/10.1021/acsomega.1c01418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Hart C, Abuladel N, Bee M, Kreider MC, Cvitan AC, Esson MM et al (2017) sequestration, and unexpected reaction products. Dalton Trans 46:16465–16473. https://doi.org/10.1039/c7dt03275g

    Article  PubMed  CAS  Google Scholar 

  97. Parashar A, Kedare PS, Alex SA, Chandrasekaran N, Mukherjee A (2017) A novel enzyme-mediated gold nanoparticle synthesis and its application for in situ detection of horseradish peroxidase inhibitor phenylhydrazine. New J Chem 41:15079–86. https://doi.org/10.1039/c7nj03783j

  98. Chen W, Shen J, Chen S, Yan J, Zhang N, Zheng K et al (2019) Synthesis of graphene quantum dot-stabilized gold nanoparticles and their application. RSC Adv 9:21215–21219. https://doi.org/10.1039/c9ra02758k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Khatami M, Mosazade F, Raeisi M, Ghasemi M, Fazli Z, Arefkia K et al (2021) Simplification of gold nanoparticle synthesis with low cytotoxicity using a greener approach: opening up new possibilities. RSC Adv 11:3288–3294. https://doi.org/10.1039/d0ra08822f

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Khatua A, Priyadarshini E, Rajamani P, Patel A, Kumar J, Naik A et al (2020) Phytosynthesis, characterization and fungicidal potential of emerging gold nanoparticles using Pongamia pinnata Leave Extract : a novel approach in nanoparticle synthesis. J Cluster Sci 31:125–131. https://doi.org/10.1007/s10876-019-01624-6

    Article  CAS  Google Scholar 

  101. Camas M, Celik F, Sazak Camas A, Ozalp HB (2019) Biosynthesis of gold nanoparticles using marine bacteria and Box-Behnken design optimization. Part Sci Technol 37:31–38. https://doi.org/10.1080/02726351.2017.1287794

    Article  CAS  Google Scholar 

  102. Toppo AL, Dhagat S, Eswari Jujjavarapu S (2022) Comparative study of response surface methodology and artificial neural network for optimization of process parameters for synthesis of gold nanoparticles by Desmostachya bipinnata extract. Prep Biochem Biotechnol 53:195–206. https://doi.org/10.1080/10826068.2022.2062773

    Article  PubMed  CAS  Google Scholar 

  103. Wu T, Duan X, Hu C, Wu C, Chen X, Huang J et al (2019) Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif Cells NanomediBiotechnol 47:512–523. https://doi.org/10.1080/21691401.2018.1560305

    Article  CAS  Google Scholar 

  104. Castro-Guerrero CF, Morales-Cepeda AB, Hernández-Vega LK, Díaz-Guillén MR (2018) Fructose-mediated gold nanoparticles synthesis. Cogent Chemistry Cogent 4:1447262. https://doi.org/10.1080/23312009.2018.1447262

    Article  CAS  Google Scholar 

  105. Rotimi L, Ojemaye MO, Okoh OO, Sadimenko A, Okoh AI (2019) Synthesis, characterization, antimalarial, antitrypanocidal and antimicrobial properties of gold nanoparticle. Green Chem Lett Rev 12:61–68. https://doi.org/10.1080/17518253.2019.1569730

    Article  CAS  Google Scholar 

  106. Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C (2019) Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol 47:1173–1180. https://doi.org/10.1080/21691401.2018.1549064

    Article  PubMed  CAS  Google Scholar 

  107. Journal AI, Ahn E, Hwang SJ, Choi M, Cho S, Lee H et al (2018) Upcycling of jellyfish ( Nemopilema nomurai ) sea wastes as highly valuable reducing agents for green synthesis of gold nanoparticles and their antitumor and anti-inflammatory activity. Artif Cells Nanomed Biotechnol 46:S1127–S1136. https://doi.org/10.1080/21691401.2018.1480490

  108. Journal AI, Chahardoli A, Karimi N, Sadeghi F, Fattahi A (2018) Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artif Cells Nanomed Biotechnol 46:579–588. https://doi.org/10.1080/21691401.2017.1332634

    Article  CAS  Google Scholar 

  109. Journal AI, Li L, Zhang W, Devanatha V, Seshadri D (2019) Synthesis and characterization of gold nanoparticles from Marsdenia tenacissima and its anticancer activity of liver cancer HepG2 cells and its anticancer activity of liver cancer HepG2 cells. Artif Cells Nanomed Biotechnol 47:3029–3036. https://doi.org/10.1080/21691401.2019.1642902

    Article  CAS  Google Scholar 

  110. Mariychuk R, Fejer J, Linnik RP, Grishchenko LM, Lisnyak VV (2022) Green synthesis and photoluminescence properties of gold nanoparticles with irregular shapes. Mol Cryst Liq Cryst 751:48–55. https://doi.org/10.1080/15421406.2022.2073528

    Article  CAS  Google Scholar 

  111. Wang L, Xu J, Yan Y, Liu H, Li F (2019) Synthesis of gold nanoparticles from leaf Panax notoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Artif Cells Nanomed Biotechnol 47:1216–1223. https://doi.org/10.1080/21691401.2019.1593852

    Article  PubMed  CAS  Google Scholar 

  112. Vijayan R, Joseph S, Mathew B (2019) Costus speciosus rhizome extract mediated synthesis of silver and gold nanoparticles and their biological and catalytic properties. Inorg Nano-Met Chem 49:249–259. https://doi.org/10.1080/24701556.2019.1661439

    Article  CAS  Google Scholar 

  113. Liu Y, Perumalsamy H, Kang CH, Kim SH, Hwang JS, Koh SC et al (2020) Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide-activated macrophages. Artif Cells Nanomed Biotechnol 48:777–788. https://doi.org/10.1080/21691401.2020.1748639

    Article  PubMed  CAS  Google Scholar 

  114. Ji Y, Cao Y, Song Y (2019) Green synthesis of gold nanoparticles using a Cordyceps militaris extract and their antiproliferative effect in liver cancer cells (HepG2). Artif Cells Nanomed Biotechnol 47:2737–2745. https://doi.org/10.1080/21691401.2019.1629952

    Article  PubMed  CAS  Google Scholar 

  115. Rauf A, Ahmad T, Khan A, Maryam UG, Ahmad B et al (2021) Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. Artif Cells Nanomed Biotechnol 49:194–203. https://doi.org/10.1080/21691401.2021.1890099

  116. Abd El-Aziz AR, Al-Othman MR, Mahmou MA (2018) Degradation of DDT by gold nanoparticles synthesised using Lawsonia inermis for environmental safety. Biotechnol Biotechnol Equip 32:1174–1182. https://doi.org/10.1080/13102818.2018.1502051

    Article  CAS  Google Scholar 

  117. Wang T, Yang L, Li Y, Bao C, Tang M, Huang X et al (2021) Simple and efficient synthesis of various sized gold nanoparticles for the selective electrochemical determination of dopamine. Anal Lett 54:1068–1084. https://doi.org/10.1080/00032719.2020.1793995

    Article  CAS  Google Scholar 

  118. Sahu A, Singh P, Singh P, Singh Gahlot AP, Mehrotr R (2022) Simple and rapid biogenic synthesis of colloidal silver and gold nanoparticles using Aegle marmelos fruit for SERS detection of DNA. Inorg Nano-Met Chem 1–12. https://doi.org/10.1080/24701556.2021.2025089

  119. Akbal Vural O (2021) Evaluation of protein functionalized gold nanoparticles to improve tamoxifen delivery: synthesis, characterization, and biocompatibility on breast cancer cells. Int J Polym Mater Polym Biomater 71:1437–1448. https://doi.org/10.1080/00914037.2021.1981321

    Article  CAS  Google Scholar 

  120. Biresaw SS, Taneja P (2022) Copper nanoparticles green synthesis and characterization as anticancer potential in breast cancer cells (MCF7) derived from Prunus nepalensis phytochemicals. Mater Today Proc 49:3501–3509. https://doi.org/10.1016/j.matpr.2021.07.149

    Article  CAS  Google Scholar 

  121. Iliger KS, Sofi TA, Bhat NA, Ahanger FA, Sekhar JC, Elhendi AZ et al (2021) Copper nanoparticles: green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi J Biol Sci 28:1477–1486. https://doi.org/10.1016/j.sjbs.2020.12.003

    Article  PubMed  CAS  Google Scholar 

  122. Jahan I, Erci F, Isildak I (2021) Facile microwave-mediated green synthesis of non-toxic copper nanoparticles using Citrus sinensis aqueous fruit extract and their antibacterial potentials. J Drug Deliv Sci Technol 61:102172. https://doi.org/10.1016/j.jddst.2020.102172

  123. Al-Khafaji MAA, Al-Refai’a RAK, Al-Zamely OMY, (2021) Green synthesis of copper nanoparticles using artemisia plant extract. Mater Today Proc 49:2831–2835. https://doi.org/10.1016/j.matpr.2021.10.067

    Article  CAS  Google Scholar 

  124. Shubhashree KR, Reddy R, Gangula AK, Nagananda GS, Badiya PK, Ramamurthy SS et al (2022) Green synthesis of copper nanoparticles using aqueous extracts from Hyptis suaveolens (L.). Mater Chem Phys 280:125795. https://doi.org/10.1016/j.matchemphys.2022.125795

  125. Nieto-Maldonado A, Bustos-Guadarrama S, Espinoza-Gomez H, Flores-López Z, L, Ramirez-Acosta K, Alonso-Nuñez G, et al (2022) Green synthesis of copper nanoparticles using different plant extracts and their antibacterial activity. J Environ Chem Eng 10:107130. https://doi.org/10.1016/j.jece.2022.107130

    Article  CAS  Google Scholar 

  126. Gopalakrishnan V, Muniraj S (2021) Materials today : proceedings Neem flower extract assisted green synthesis of copper nanoparticles—optimisation, characterisation and anti-bacterial study. Mater Today Proc 36:832–836. https://doi.org/10.1016/j.matpr.2020.07.013

    Article  CAS  Google Scholar 

  127. Benassai E, Del Bubba M, Ancillotti C, Colzi I, Gonnelli C, Calisi N et al (2021) Green and cost-effective synthesis of copper nanoparticles by extracts of non-edible and waste plant materials from Vaccinium species: characterization and antimicrobial activity. Mater Sci Eng C 119:111453. https://doi.org/10.1016/j.msec.2020.111453

  128. Sarwar N, Bin HU, Kumar M, Zaidi SFA, Yoo JH, Ali N et al (2021) Citric acid mediated green synthesis of copper nanoparticles using cinnamon bark extract and its multifaceted applications. J Clean Prod 292:125974. https://doi.org/10.1016/j.jclepro.2021.125974

    Article  CAS  Google Scholar 

  129. Martins TAG, Falconi IBA, Pavoski G, de Moraes VT, dos Galluzzi Baltazar M, P, Espinosa DCR, (2021) Green synthesis, characterization, and application of copper nanoparticles obtained from printed circuit boards to degrade mining surfactant by Fenton process. J Environ Chem Eng 9:106576. https://doi.org/10.1016/j.jece.2021.106576

    Article  CAS  Google Scholar 

  130. Rajagopal G, Nivetha A, Sundar M, Panneerselvam T (2021) Heliyon Mixed phytochemicals mediated synthesis of copper nanoparticles for anticancer and larvicidal applications. Heliyon 7:e07360. https://doi.org/10.1016/j.heliyon.2021.e07360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Hongfeng Z, El-Kott A, Ezzat Ahmed A, Khames A (2021) Synthesis of chitosan-stabilized copper nanoparticles (CS-Cu NPs): Its catalytic activity for C-N and C-O cross-coupling reactions and treatment of bladder cancer. Arab J Chem 14:103259. https://doi.org/10.1016/j.arabjc.2021.103259

  132. Rostami-Tapeh-Esmaeil E, Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H (2021) Synthesis of copper and copper oxide nanoparticles with different morphologies using aniline as reducing agent. Solid State Commun 334–335:114364. https://doi.org/10.1016/j.ssc.2021.114364

    Article  CAS  Google Scholar 

  133. Wang J, Zhao X, Tang F, Li Y, Yan Y, Li L (2021) Synthesis of copper nanoparticles with controllable crystallinity and their photothermal property. Colloids Surf A 626:126970. https://doi.org/10.1016/j.colsurfa.2021.126970

    Article  CAS  Google Scholar 

  134. Noor S, Shah Z, Javed A, Ali A, Hussain SB, Zafar S et al (2020) A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. J Microbiol Methods 174:105966. https://doi.org/10.1016/j.mimet.2020.105966

    Article  PubMed  CAS  Google Scholar 

  135. Varghese B, Kurian M, Krishna S, Athira TS (2019) Biochemical synthesis of copper nanoparticles using Zingiber officinalis and Curcuma longa: characterization and antibacterial activity study. Mater Today Proc 25:302–306. https://doi.org/10.1016/j.matpr.2020.01.476

    Article  CAS  Google Scholar 

  136. Venugopalan R, Pitchai S, Devarayan K, Swaminathan VC (2020) Biogenic synthesis of copper nanoparticles using Borreria hispida (Linn.) extract and its antioxidant activity. Mater Today Proc 33:4023–4025. https://doi.org/10.1016/j.matpr.2020.06.419

    Article  CAS  Google Scholar 

  137. Amaliyah S, Pangesti DP, Masruri M, Sabarudin A, Sumitro SB (2020) Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon 6:e04636. https://doi.org/10.1016/j.heliyon.2020.e04636

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mali SC, Dhaka A, Githala CK, Trivedi R (2020) Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol Rep 27:e00518. https://doi.org/10.1016/j.btre.2020.e00518

  139. Wang G, Zhao K, Gao C, Wang J, Mei Y, Zheng X et al (2021) Journal of Environmental Chemical Engineering Green synthesis of copper nanoparticles using green coffee bean and their applications for efficient reduction of organic dyes. J Environ Chem Eng 9:105331. https://doi.org/10.1016/j.jece.2021.105331

    Article  CAS  Google Scholar 

  140. Chawla P, Kumar N, Bains A, Bala S, Kumar M, Kaushik R et al (2020) International Journal of Biological Macromolecules Gum arabic capped copper nanoparticles : Synthesis, characterization, and applications. Int J Biol Macromol 146:232–242. https://doi.org/10.1016/j.ijbiomac.2019.12.260

    Article  PubMed  CAS  Google Scholar 

  141. Arumugam DG, Sivaji S, Dhandapani KV, Nookala S, Ranganathan B (2019) Panchagavya mediated copper nanoparticles synthesis, characterization and evaluating cytotoxicity in brine shrimp. Biocatal Agric Biotechnol 19:101132. https://doi.org/10.1016/j.bcab.2019.101132

    Article  Google Scholar 

  142. Sarwar N, Hee S, Dastgeer G, Bin U, Kumar M, Nawaz A et al (2021) Applied Surface Science Synthesis of citrate-capped copper nanoparticles : a low temperature sintering approach for the fabrication of oxidation stable flexible conductive film. Appl Surf Sci 542:148609. https://doi.org/10.1016/j.apsusc.2020.148609

    Article  CAS  Google Scholar 

  143. Sebeia N, Jabli M, Ghith A, Sale TA (2020) Eco-friendly synthesis of Cynomorium coccineum extract for controlled production of copper nanoparticles for sorption of methylene blue dye. Arabian Journal of Chemistry, King Saud University 13:4263–4274. https://doi.org/10.1016/j.arabjc.2019.07.007

    Article  CAS  Google Scholar 

  144. Seif El-Nasr R, Abdelbasir SM, Kamel AH, Hassan SSM (2020) Environmentally friendly synthesis of copper nanoparticles from waste printed circuit boards. Sep Purif Technol 230:115860. https://doi.org/10.1016/j.seppur.2019.115860

    Article  CAS  Google Scholar 

  145. Zhao K, Wang J, Kong W, Zhu P (2020) Facile Green synthesis and characterization of copper nanoparticles by aconitic acid for catalytic reduction of nitrophenols. J Environ Chem Eng 8:103517. https://doi.org/10.1016/j.jece.2019.103517

    Article  CAS  Google Scholar 

  146. Sharma P, Pant S, Dave V, Tak K, Sadhu V, Reddy KR (2019) Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J Microbiol Methods 160:107–116. https://doi.org/10.1016/j.mimet.2019.03.007

    Article  PubMed  CAS  Google Scholar 

  147. Ismail MIM (2020) Green synthesis and characterizations of copper nanoparticles. Mater Chem Phys 240:122283. https://doi.org/10.1016/j.matchemphys.2019.122283

    Article  CAS  Google Scholar 

  148. Mahdi M, Ghaneialvar H, Akbaribazm M (2019) Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in. J Photochem Photobiol B 197:111556. https://doi.org/10.1016/j.jphotobiol.2019.111556

  149. Hemmati S, Ahmeda A, Salehabadi Y, Zangeneh A, Zangeneh MM (2020) Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and L-Ascorbic acid. Polyhedron 180:114425. https://doi.org/10.1016/j.poly.2020.114425

    Article  CAS  Google Scholar 

  150. Li L, Chen J, Li Y, Song N, Zhu L, Li Z (2020) Synthesis of fluorescent pink emitting copper nanoparticles and sensitive detection of α-naphthaleneacetic acid. Spectrochimica Acta - part A: molecular and biomolecular spectroscopy 224:117433. https://doi.org/10.1016/j.saa.2019.117433

    Article  PubMed  CAS  Google Scholar 

  151. Bi S, Ahmad N (2022) Green synthesis of palladium nanoparticles and their biomedical applications. Mater Today Proc 62:3172–3177. https://doi.org/10.1016/j.matpr.2022.03.441

    Article  CAS  Google Scholar 

  152. Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R et al (2020) High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. Nanomed Nanotechnol Biol Med Inc 30:102297. https://doi.org/10.1016/j.nano.2020.102297

  153. Bathula C, K S, Kumar K A, Yadav H, Ramesh S, Shinde S, et al (2020) Ultrasonically driven green synthesis of palladium nanoparticles by Coleus amboinicus for catalytic reduction and Suzuki-Miyaura reaction. Colloids Surf, B 192:111026. https://doi.org/10.1016/j.colsurfb.2020.111026

    Article  CAS  Google Scholar 

  154. Seku K, Sulaiman Hussaini S, Golla N, Mangatayaru KG, D SMV, Rapolu S, et al (2020) Microwave-assisted synthesis of palladium nanoparticles using Frankincense resin and evaluation of their catalytic properties. Mater Lett 278:128427. https://doi.org/10.1016/j.matlet.2020.128427

    Article  CAS  Google Scholar 

  155. Manjare SB, Chaudhari RA (2020) Environment-friendly synthesis of palladium nanoparticles loaded on Zeolite Type-Y (Na-form) using Anacardium Occidentale shell extract (Cashew nut shell extract), characterization and application in -C-C- coupling reaction. J Environ Chem Eng 8:104213. https://doi.org/10.1016/j.jece.2020.104213

    Article  CAS  Google Scholar 

  156. Chen J, Wei D, Liu L, Nai J, Liu Y, Xiong Y et al (2021) Green synthesis of Konjac glucomannan templated palladium nanoparticles for catalytic reduction of azo compounds and hexavalent chromium. Mater Chem Phys 267:124651. https://doi.org/10.1016/j.matchemphys.2021.124651

    Article  CAS  Google Scholar 

  157. Bendre AD, Patil VP, Terdale SS, Kodam KM, Waghmode SB (2020) A simple, efficient and green approach for the synthesis of palladium nanoparticles using oxytocin: application for ligand free Suzuki reaction and total synthesis of aspongpyrazine A. J Organomet Chem 909:121093. https://doi.org/10.1016/j.jorganchem.2019.121093

    Article  CAS  Google Scholar 

  158. Tan L, Ray Jones T, Poitras J, Xie J, Liu X, Southam G (2020) Biochemical synthesis of palladium nanoparticles: the influence of chemical fixatives used in electron microscopy on nanoparticle formation and catalytic performance. J Hazard Mater 398:122945. https://doi.org/10.1016/j.jhazmat.2020.122945

    Article  PubMed  CAS  Google Scholar 

  159. Phan TTV, Hoang G, Nguyen VT, Nguyen TP, Kim HH, Mondal S et al (2019) Chitosan as a stabilizer and size-control agent for synthesis of porous flower-shaped palladium nanoparticles and their applications on photo-based therapies. Carbohyd Polym 205:340–352. https://doi.org/10.1016/j.carbpol.2018.10.062

    Article  CAS  Google Scholar 

  160. Baran T, Nasrollahzadeh M (2019) Facile synthesis of palladium nanoparticles immobilized on magnetic biodegradable microcapsules used as effective and recyclable catalyst in Suzuki-Miyaura reaction and p-nitrophenol reduction. Carbohyd Polym 222:115029. https://doi.org/10.1016/j.carbpol.2019.115029

    Article  CAS  Google Scholar 

  161. Olajire AA, Mohammed AA (2019) Green synthesis of palladium nanoparticles using Ananas comosus leaf extract for solid-phase photocatalytic degradation of low density polyethylene film. J Environ Chem Eng 7:103270. https://doi.org/10.1016/j.jece.2019.103270

    Article  CAS  Google Scholar 

  162. Gioria E, Signorini C, Wisniewski F, Gutierrez L (2020) Green synthesis of time-stable palladium nanoparticles using microfluidic devices. J Environ Chem Eng 8:104096. https://doi.org/10.1016/j.jece.2020.104096

    Article  CAS  Google Scholar 

  163. Sikeyi LL, Ntuli TD, Mongwe TH, Maxakato NW, Carleschi E, Doyle BP et al (2021) Microwave assisted synthesis of nitrogen doped and oxygen functionalized carbon nano onions supported palladium nanoparticles as hybrid anodic electrocatalysts for direct alkaline ethanol fuel cells. Int J Hydrogen Energy 46:10862–10875. https://doi.org/10.1016/j.ijhydene.2020.12.154

    Article  CAS  Google Scholar 

  164. Shaikh JA (2019) Reducing agent free synthesis of palladium nanoparticles using Schiff base complex and study of its catalytic activity towards reduction of p-nitrophenol to p-aminophenol. Nano-Struct Nano-Obj 20:100379. https://doi.org/10.1016/j.nanoso.2019.100379

  165. Anila PA, Keerthiga B, Ramesh M, Muralisankar T (2021) Synthesis and characterization of palladium nanoparticles by chemical and green methods: A comparative study on hepatic toxicity using zebrafish as an animal model. Comp Biochem Physiol Part C Toxicol Pharmacol 244:108979. https://doi.org/10.1016/j.cbpc.2021.108979

  166. Mirza-Aghayan M, Mohammadi M, Boukherroub R (2022) Synthesis and characterization of palladium nanoparticles immobilized on graphene oxide functionalized with triethylenetetramine or 2,6-diaminopyridine and application for the Suzuki cross-coupling reaction. J Organomet Chem 957:122160. https://doi.org/10.1016/j.jorganchem.2021.122160

    Article  CAS  Google Scholar 

  167. Seku K, Bhagavanth Reddy G, Hussaini SS, Pejjai B, Hussain M, Reddy DM et al (2022) An efficient biosynthesis of palladium nanoparticles using Bael gum and evaluation of their catalytic and antibacterial activity. Int J Biol Macromol 209:912–922. https://doi.org/10.1016/j.ijbiomac.2022.04.070

    Article  PubMed  CAS  Google Scholar 

  168. Gholinejad M, Shojafar M, Sansano JM, Mikhaylov VN, Balova IA, Khezri R (2022) Hyperbranched polymer immobilized palladium nanoparticles as an efficient and reusable catalyst for cyanation of aryl halides and reduction of nitroarenes. J Organomet Chem 970–971:122359. https://doi.org/10.1016/j.jorganchem.2022.122359

    Article  CAS  Google Scholar 

  169. Gholinejad M, Esmailoghli H, Khosravi F, Sansano JM (2022) Ionic liquid modified carbon nanotube supported palladium nanoparticles for efficient Sonogashira-Hagihara reaction. J Organomet Chem 963:122295. https://doi.org/10.1016/j.jorganchem.2022.122295

    Article  CAS  Google Scholar 

  170. Yasmin S, Roy N, Kabir MH, Jeon S (2022) Nitrogen-functionalized carbon nanotube based palladium nanoparticles as an efficient catalyst for oxygen reduction and ethanol oxidation reaction. Appl Surf Sci Adv 9:100235. https://doi.org/10.1016/j.apsadv.2022.100235

  171. Su Y, Li C, Xu L, Xue J, Yuan W, Yao C et al (2022) Palladium nanoparticles supported on flower-like boron, nitrogen doped carbon for electrochemical oxidation ethanol reaction. J Alloy Compd 901:163333. https://doi.org/10.1016/j.jallcom.2021.163333

    Article  CAS  Google Scholar 

  172. Ituen E, Singh A, Yuanhua L (2021) Synthesis of bio-based nickel nanoparticles composite, characterization and corrosion in hibition in simulated oilfield microbial and acidizing environments. J Adhes Sci Technol 35:15–34. https://doi.org/10.1080/01694243.2020.1785992

    Article  CAS  Google Scholar 

  173. Zaib M, Jamil M, Shahzadi T, Farooq U (2021) Ultrasonic green synthesis of different nickel nanoparticles and their application in Cr(VI) removal studies. Inorg Nano-Met Chem 1–9. https://doi.org/10.1080/24701556.2021.1983836

  174. Huang Y, Zhu C, Xie R, Ni M (2021) Green synthesis of nickel nanoparticles using Fumaria officinalis as a novel chemotherapeutic drug for the treatment of ovarian cancer. J Exp Nanosci 16:369–382. https://doi.org/10.1080/17458080.2021.1975037

    Article  CAS  Google Scholar 

  175. Egbosiuba TC, Egwunyenga MC, Tijani JO, Mustapha S, Abdulkareem AS, Kovo AS et al (2022) Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. J Hazard Mater 423:126993. https://doi.org/10.1016/j.jhazmat.2021.126993

    Article  PubMed  CAS  Google Scholar 

  176. Park KS, Goag TY, Kwon JH, Park YM, Yu JS, Jeong HE et al (2021) Effects of spatially confined nickel nanoparticles in surface-pretreated hydrophobic SBA-15 for dry reforming of CH4 with CO2. J CO2 Util 51:12–6. https://doi.org/10.1016/j.jcou.2021.101629

  177. Banik S, Mahajan A, Bhattacharya S, kumar, (2019) Size control synthesis of pure Ni nanoparticles and anodic-oxidation of Butan-1-ol in alkali. Mater Chem Phys 235:121747. https://doi.org/10.1016/j.matchemphys.2019.121747

    Article  CAS  Google Scholar 

  178. Bhaumik M, Maity A, Brink HG (2021) Zero valent nickel nanoparticles decorated polyaniline nanotubes for the efficient removal of Pb(II) from aqueous solution: Synthesis, characterization and mechanism investigation. Chem Eng J 417:1–11. https://doi.org/10.1016/j.cej.2020.127910

    Article  CAS  Google Scholar 

  179. Chandra C, Khan F (2020) Nano scale zerovalent nickel: Green synthesis, characterization, and efficient removal of lead from aqueous solution. Inorg Nano-Met Chem 50:1044–1052. https://doi.org/10.1080/24701556.2020.1734822

    Article  CAS  Google Scholar 

  180. Das AK, Nandy S, Bhar S (2021) Chemoselective and ligand-free aerobic oxidation of benzylic alcohols to carbonyl compounds using alumina-supported mesoporous nickel nanoparticle as an efficient recyclable heterogeneous catalyst 35:e6282. https://doi.org/10.1002/aoc.6282

    Article  CAS  Google Scholar 

  181. Mahajan A, Gupta M (2021) Hybrid ceria and chitosan supported nickel nanoparticles: a recyclable nanocatalytic system in the reduction of nitroarenes and the synthesis of benzopyran derivatives in green solvent. Appl Organomet Chem 35:1–16. https://doi.org/10.1002/aoc.6161

    Article  CAS  Google Scholar 

  182. Vargas E, Romero-Sáez M, Denardin JC, Gracia F (2016) The ultrasound-assisted synthesis of effective monodisperse nickel nanoparticles: magnetic characterization and its catalytic activity in CO2 methanation. New J Chem 40:7307–7310. https://doi.org/10.1039/c6nj01574c

    Article  CAS  Google Scholar 

  183. Himstedt R, Hinrichs D, Sann J, Weller A, Steinhauser G, Dorfs D (2019) Halide ion influence on the formation of nickel nanoparticles and their conversion into hollow nickel phosphide and sulphide nanocrystals. Nanoscale 11:15104–15111. https://doi.org/10.1039/c9nr04187g

    Article  PubMed  CAS  Google Scholar 

  184. Fujioka D, Ikeda S, Akamatsu K, Nawafune H, Kojima K (2019) Preparation of Ni nanoparticles by liquid-phase reduction to fabricate metal nanoparticle-polyimide composite films. RSC Adv 9:6438–6443. https://doi.org/10.1039/c9ra00182d

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Arrigo R, Gallarati S, Schuster ME, Seymour JM, Gianolio D, da Silva I et al (2020) Influence of synthesis conditions on the structure of nickel nanoparticles and their reactivity in selective asymmetric hydrogenation. ChemCatChem 12:1491–1503. https://doi.org/10.1002/cctc.201901955

    Article  CAS  Google Scholar 

  186. Wan Z, Tao Y, You H, Zhang X, Shao J (2021) Na-ZSM-5 zeolite nanocrystals supported nickel nanoparticles for efficient hydrogen production from ammonia decomposition. ChemCatChem 13:3027–3036. https://doi.org/10.1002/cctc.202100324

    Article  CAS  Google Scholar 

  187. Zhang Y, Yang H, Chi Q, Zhang Z (2019) Nitrogen-doped carbon-supported nickel nanoparticles: a robust catalyst to bridge the hydrogenation of nitriles and the reductive amination of carbonyl compounds for the synthesis of primary amines. Chemsuschem 12:1246–1255. https://doi.org/10.1002/cssc.201802459

    Article  PubMed  CAS  Google Scholar 

  188. Bhawna KS, Sharma R, Gupta A, Tyagi A, Singh P et al (2022) Recent insights into SnO2 -based engineered nanoparticles for sustainable H2 generation and remediation of pesticides. New J Chem 46:4014–4048. https://doi.org/10.1039/d1nj05808h

    Article  CAS  Google Scholar 

  189. Kumar V, Yadav SK, Gupta A, Dwivedi B, Kumar A, Singh P et al (2019) Facile synthesis of Ce–doped SnO2 nanoparticles: a promising photocatalyst for hydrogen evolution and dyes degradation. ChemistrySelect 4:3722–3729. https://doi.org/10.1002/slct.201900032

    Article  CAS  Google Scholar 

  190. Bhawna GA, Kumar P, Tyagi A, Kumar R, Kumar A, Singh P et al (2020) Facile synthesis of N-doped SnO2 nanoparticles: a cocatalyst-free promising photocatalyst for hydrogen generation. ChemistrySelect 5:7775–7782. https://doi.org/10.1002/slct.202001301

    Article  CAS  Google Scholar 

  191. Kumar S, Bhawna YSK, Gupta A, Kumar R, Ahmed J et al (2022) B-doped SnO2 nanoparticles: a new insight into the photocatalytic hydrogen generation by water splitting and degradation of dyes. Environ Sci Pollut Res 29:47448–47461. https://doi.org/10.1007/s11356-022-18946-0

    Article  CAS  Google Scholar 

  192. Tunesi S, Anderson M (1991) Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended titania ceramic membranes. J Phys Chem 95:3399–3405. https://doi.org/10.1021/j100161a078

    Article  CAS  Google Scholar 

  193. Ghaffar A, Kiran S, Rafique MA, Iqbal S, Nosheen S, Hou Y et al (2021) Citrus paradisi fruit peel extract mediated green synthesis of copper nanoparticles for remediation of Disperse Yellow 125 dye. Desalin Water Treat 212:368–375. https://doi.org/10.5004/dwt.2021.26684

    Article  CAS  Google Scholar 

  194. Kiran S, Rafique MA, Iqbal S, Nosheen S, Naz S, Rasheed A (2020) Synthesis of nickel nanoparticles using Citrullus colocynthis stem extract for remediation of Reactive Yellow 160 dye. Environ Sci Pollut Res 27:32998–33007. https://doi.org/10.1007/s11356-020-09510-9

    Article  CAS  Google Scholar 

  195. Hosny M, Eltaweil AS, Mostafa M, El-Badry YA, Hussein EE, Omer AM et al (2022) Facile synthesis of gold nanoparticles for anticancer, antioxidant applications, and photocatalytic degradation of toxic organic pollutants. ACS Omega 7:3121–3133. https://doi.org/10.1021/acsomega.1c06714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Rather MY, Shincy M, Sundarapandian SM (2023) Photocatalytic degradation of Rhodamine-B by phytosynthesized gold nanoparticles. Int J Environ Sci Technol 20:4073–4084. https://doi.org/10.1007/s13762-022-04123-w

    Article  CAS  Google Scholar 

  197. Noman M, Shahid M, Ahmed T, Niazi MBK, Hussain S, Song F et al (2020) Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environ Pollut 257:113514. https://doi.org/10.1016/j.envpol.2019.113514

  198. Narasaiah BP, Mandal BK (2020) Remediation of azo-dyes based toxicity by agro-waste cotton boll peels mediated palladium nanoparticles. J Saudi Chem Soc 24:267–281. https://doi.org/10.1016/j.jscs.2019.11.003

    Article  CAS  Google Scholar 

  199. Xiong Y, Huang L, Mahmud S, Yang F, Liu H (2020) Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes. Chin J Chem Eng 28:1334–1343. https://doi.org/10.1016/j.cjche.2020.02.014

    Article  CAS  Google Scholar 

  200. Singh RK, Behera SS, Singh KR, Mishra S, Panigrahi B, Sahoo TR et al (2020) Biosynthesized gold nanoparticles as photocatalysts for selective degradation of cationic dye and their antimicrobial activity. J Photochem Photobiol A 400:112704. https://doi.org/10.1016/j.jphotochem.2020.112704

    Article  CAS  Google Scholar 

  201. Vinay SP, Nagaraju G, Chandrappa CP, Chandrasekhar N (2020) Hydrothermal synthesis of gold nanoparticles using spider cobweb as novel biomaterial: application to photocatalytic. Chem Phys Lett 748:137402. https://doi.org/10.1016/j.cplett.2020.137402

    Article  CAS  Google Scholar 

  202. Gnanamoorthy G, Ramar K, Ali D, Yadav VK, Kumar G (2022) Synthesis and effective performance of photocatalytic and antimicrobial activities of Bauhinia tomentosa Linn plants using of gold nanoparticles. Opt Mater 123:111945. https://doi.org/10.1016/j.optmat.2021.111945

    Article  CAS  Google Scholar 

  203. Harby AG, El-Borady OM, El-Kemary M (2022) The exploitation of rice husk biomass for the bio-inspired synthesis of gold nanoparticles as a multifunctional material for various biological and photocatalytic applications. Bioprocess Biosyst Eng 45:61–74. https://doi.org/10.1007/s00449-021-02639-y

    Article  PubMed  CAS  Google Scholar 

  204. Chand K, Cao D, Fouad DE, Shah AH, Dayo AQ, Zhu K et al (2020) Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab J Chem 13:8248–8261. https://doi.org/10.1016/j.arabjc.2020.01.009

    Article  CAS  Google Scholar 

  205. Rajkumar R, Ezhumalai G, Gnanadesigan M (2021) A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environ Technol Innov 21:101282. https://doi.org/10.1016/j.eti.2020.101282

    Article  CAS  Google Scholar 

  206. Mehata MS (2021) Green synthesis of silver nanoparticles using Kalanchoe pinnata leaves (life plant) and their antibacterial and photocatalytic activities. Chem Phys Lett 778:138760. https://doi.org/10.1016/j.cplett.2021.138760

    Article  CAS  Google Scholar 

  207. Awad MA, Hendi AA, Ortashi KM, Alzahrani B, Soliman D, Alanazi A et al (2021) Biogenic synthesis of silver nanoparticles using Trigonella foenum-graecum seed extract: characterization, photocatalytic and antibacterial activities. Sens Actuators A 323:112670. https://doi.org/10.1016/j.sna.2021.112670

    Article  CAS  Google Scholar 

  208. Chand K, Jiao C, Lakhan MN, Shah AH, Kumar V, Fouad DE et al (2021) Green synthesis, characterization and photocatalytic activity of silver nanoparticles synthesized with Nigella Sativa seed extract. Chem Phys Lett 763:138218. https://doi.org/10.1016/j.cplett.2020.138218

    Article  CAS  Google Scholar 

  209. Kadam J, Dhawal P, Barve S, Kakodkar S (2020) Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg2+ biosensing. SN Appl Sci  2:1–16. https://doi.org/10.1007/s42452-020-2543-4

    Article  CAS  Google Scholar 

  210. Khan ZUH, Shah NS, Iqbal J, Khan AU, Imran M, Alshehri SM et al (2020) Biomedical and photocatalytic applications of biosynthesized silver nanoparticles: ecotoxicology study of brilliant green dye and its mechanistic degradation pathways. J Mol Liq 319:114114. https://doi.org/10.1016/j.molliq.2020.114114

    Article  CAS  Google Scholar 

  211. Mavaei M, Chahardoli A, Shokoohinia Y, Khoshroo A, Fattahi A (2020) One-step synthesized silver nanoparticles using isoimperatorin: evaluation of photocatalytic, and electrochemical activities. Sci Rep 10:1–12. https://doi.org/10.1038/s1598-020-58697-x

    Article  Google Scholar 

  212. Subramaniam S, Kumarasamy S, Narayanan M, Ranganathan M, Rathinavel T, Chinnathambi A et al (2022) Spectral and structure characterization of Ferula assafoetida fabricated silver nanoparticles and evaluation of its cytotoxic, and photocatalytic competence. Environ Res 204:111987. https://doi.org/10.1016/j.envres.2021.111987

    Article  PubMed  CAS  Google Scholar 

  213. Seerangaraj V, Sathiyavimal S, Shankar SN, Nandagopal JGT, Balashanmugam P, Al-Misned FA et al (2021) Cytotoxic effects of silver nanoparticles on Ruellia tuberosa: photocatalytic degradation properties against crystal violet and coomassie brilliant blue. J Environ Chem Eng 9:105088. https://doi.org/10.1016/j.jece.2021.105088

    Article  CAS  Google Scholar 

  214. Shaikh WA, Chakraborty S, Islam RU (2020) Photocatalytic degradation of rhodamine B under UV irradiation using Shorea robusta leaf extract-mediated bio-synthesized silver nanoparticles. Int J Environ Sci Technol 17:2059–2072. https://doi.org/10.1007/s13762-019-02473-6

    Article  CAS  Google Scholar 

  215. Raina S, Roy A, Bharadvaja N (2020) Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environ Nanotechnol Monit Manag 13:100278. https://doi.org/10.1016/j.enmm.2019.100278

  216. Kiriyanthan RM, Sharmili SA, Balaji R, Jayashree S, Mahboob S, Al-Ghanim KA et al (2020) Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using Manilkara zapota leaf extract: a photodynamic approach. Photodiagn Photodyn Ther 32:102058. https://doi.org/10.1016/j.pdpdt.2020.102058

    Article  CAS  Google Scholar 

  217. Ahmaruzzaman M (2022) Ecofriendly biosynthetic route for production of Cu nanoparticles and evaluation of their photocatalytic activities for degradation of organic compounds. J Iran Chem Soc 19:645–654. https://doi.org/10.1007/s13738-021-02325-6

    Article  CAS  Google Scholar 

  218. Chandraker SK, Lal M, Ghosh MK, Tiwari V, Ghorai TK, Shukla R (2020) Green synthesis of copper nanoparticles using leaf extract of Ageratum houstonianum Mill. and study of their photocatalytic and antibacterial activities. Nano Express, IOP Publishing 1:10033. https://doi.org/10.1088/2632-959X/ab8e99

  219. Ghosh MK, Sahu S, Gupta I, Ghorai TK (2020) Green synthesis of copper nanoparticles from an extract of Jatropha curcas leaves: characterization, optical properties, CT-DNA binding and photocatalytic activity. RSC Adv 10:22027–22035. https://doi.org/10.1039/D0RA03186K

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. El-Berry MF, Sadeek SA, Abdalla AM, Nassar MY (2021) Microwave-assisted fabrication of copper nanoparticles utilizing different counter ions: an efficient photocatalyst for photocatalytic degradation of safranin dye from aqueous media. Mater Res Bull 133:111048. https://doi.org/10.1016/j.materresbull.2020.111048

    Article  CAS  Google Scholar 

  221. Selvam K, Sudhakar C, Selvankumar T, Senthilkumar B, Selva Kumar R, Kannan N (2020) Biomimetic synthesis of copper nanoparticles using rhizome extract of Corallocarbus epigaeus and their bactericidal with photocatalytic activity. SN Appl Sci 2:1–7. https://doi.org/10.1007/s42452-020-2811-3

    Article  CAS  Google Scholar 

  222. Maria SA, James A, Riya D (2020) Facile synthesis of nickel nanoparticles and its efficient dye degradation. Res J Chem Environ 24:81–85

    Google Scholar 

  223. Souza LRR, Corrêa TZ, Bruni AT, da Veiga MAMS (2021) The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor. Environmental Science and Pollution Research, Environmental Science and Pollution Research 28:16720–16733. https://doi.org/10.1007/s11356-020-11862-1

    Article  PubMed  CAS  Google Scholar 

  224. Alshehri MA, Aziz AT, Trivedi S, Alanazi NA, Panneerselvam C, Baeshen R et al (2020) One-step synthesis of Ag nanoparticles using aqueous extracts from Sundarbans mangroves revealed high toxicity on major mosquito vectors and microbial pathogens. J Cluster Sci 31:177–184. https://doi.org/10.1007/s10876-019-01631-7

    Article  CAS  Google Scholar 

  225. Kakakhel MA, Din ZU, S, Wang W, (2022) Evaluation of the antibacterial influence of silver nanoparticles against fish pathogenic bacterial isolates and their toxicity against common carp fish. Microsc Res Tech 85:1282–1288. https://doi.org/10.1002/jemt.23994

    Article  PubMed  CAS  Google Scholar 

  226. Kakakhel MA, Wu F, Feng H, Hassan Z, Ali I, Saif I et al (2021) Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish. Microsc Res Tech 84:1765–1774. https://doi.org/10.1002/jemt.23733

    Article  PubMed  CAS  Google Scholar 

  227. Ali I, Khan S, Shah K, Haroon K, Bian L (2021) Microscopic analysis of plant-mediated silver nanoparticle toxicity in rainbow. Microsc Res Tech 84:2302–2310. https://doi.org/10.1002/jemt.23785

    Article  PubMed  CAS  Google Scholar 

  228. Schultz DR, Tang S, Miller C, Gagnon D, Shekh K, Alcaraz AJG et al (2021) A multi – life stage comparison of silver nanoparticle toxicity on the early development of three Canadian fish species. 40:3337–50. https://doi.org/10.1002/etc.5210

  229. Altwaijry N, Alotaibi B (2020) Therapeutic effects of rocket seeds ( Eruca sativa L .) against testicular toxicity and oxidative stress caused by silver nanoparticles injection in rats. 35:952–60. https://doi.org/10.1002/tox.22931

  230. Manimegalai T, Raguvaran K, Kalpana M, Maheswaran R (2022) Facile synthesis of silver nanoparticles using Vernonia anthelmintica ( L.) Willd. and their toxicity against Spodoptera litura ( Fab.), Helicoverpa armigera ( Hub.), Aedes aegypti Linn. and Culex quinquefasciatus Say. J Cluster Sci 33:2287–2303. https://doi.org/10.1007/s10876-021-02151-z

    Article  CAS  Google Scholar 

  231. Anthoni A, Balasubramaniam J, Sekar M (2020) Green synthesis and characterization of silver nanoparticles ( AgNPs ) using leaf extract of Solanum nigrum and assessment of toxicity in vertebrate and invertebrate aquatic animals. J Cluster Sci 31:989–1002. https://doi.org/10.1007/s10876-019-01704-7

    Article  CAS  Google Scholar 

  232. Manimegalai T, Raguvaran K, Kalpana M, Maheswaran R (2020) Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegypti and Culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera. Environ Sci Pollut Res 27:43103–43116. https://doi.org/10.1007/s11356-020-10127-1

    Article  CAS  Google Scholar 

  233. Enea M, Pereira E, Costa J, Soares ME, Dias da Silva D, de Bastos M, L, et al (2021) Cellular uptake and toxicity of gold nanoparticles on two distinct hepatic cell models. Toxicol In Vitro 70:105046. https://doi.org/10.1016/j.tiv.2020.105046

    Article  PubMed  CAS  Google Scholar 

  234. Borase HP, Muley AB, Patil SV, Singhal RS (2019) Nano-eco toxicity study of gold nanoparticles on aquatic organism Moina macrocopa: as new versatile ecotoxicity testing model. Environ Toxicol Pharmacol 68:4–12. https://doi.org/10.1016/j.etap.2019.02.013

    Article  PubMed  CAS  Google Scholar 

  235. Marcelino MY, Borges FA, Scorzoni L, de Lacorte SJ, Garms BC, Niemeyer JC et al (2021) Synthesis and characterization of gold nanoparticles and their toxicity in alternative methods to the use of mammals. J Environ Chem Eng 9:106779. https://doi.org/10.1016/j.jece.2021.106779

    Article  CAS  Google Scholar 

  236. Sun PP, Lai CS, Hung CJ, Dhaiveegan P, Tsai ML, Chiu CL et al (2021) Subchronic oral toxicity evaluation of gold nanoparticles in male and female mice. Heliyon 7:e06577. https://doi.org/10.1016/j.heliyon.2021.e06577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Ranjitha VR, Rai VR (2021) Bioassisted synthesis of gold nanoparticles from Saccharomonospora glauca : toxicity and biocompatibility study. BioNanoScience 11:371–379. https://doi.org/10.1007/s12668-021-00830-9

    Article  Google Scholar 

  238. Wiwanitkit V, Sereemaspun A, Rojanathanes R (2009) Effect of gold nanoparticle on the microscopic morphology of white blood cell 20:109–110. https://doi.org/10.1111/j.1365-2303.2007.00532.x

    Article  CAS  Google Scholar 

  239. Yang L, He Z, Li X, Jiang Z, Xuan F, Tang B et al (2022) Behavior and toxicity assessment of copper nanoparticles in aquatic environment: a case study on red swamp crayfish. J Environ Manage 313:114986. https://doi.org/10.1016/j.jenvman.2022.114986

    Article  PubMed  CAS  Google Scholar 

  240. Fahmy HM, Ali A, O, A Hassan A, A Mohamed M, (2020) Biodistribution and toxicity assessment of copper nanoparticles in the rat brain. J Trace Elem Med Biol 61:126505. https://doi.org/10.1016/j.jtemb.2020.126505

    Article  PubMed  CAS  Google Scholar 

  241. Tabatabaee S, Iranbakhsh A, Shamili M, Oraghi Ardebili Z (2021) Copper nanoparticles mediated physiological changes and transcriptional variations in microRNA159 (miR159) and mevalonate kinase (MVK) in pepper; potential benefits and phytotoxicity assessment. J Environ Chem Eng 9:106151. https://doi.org/10.1016/j.jece.2021.106151

    Article  CAS  Google Scholar 

  242. Razmara P, Pyle GG (2021) Effect of copper nanoparticles and copper ions on the architecture of rainbow trout olfactory mucosa. Ecotoxicol Environ Saf 227:112876. https://doi.org/10.1016/j.ecoenv.2021.112876

    Article  PubMed  CAS  Google Scholar 

  243. Yu Q, Wang Z, Wang G, Peijnenburg WJGM, Vijver MG (2022) Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna. Environ Pollut 292:118413. https://doi.org/10.1016/j.envpol.2021.118413

    Article  PubMed  CAS  Google Scholar 

  244. Barreto DM, Tonietto AE, Lombardi AT (2021) Environmental concentrations of copper nanoparticles affect vital functions in Ankistrodesmus densus. Aquat Toxicol 231:105720. https://doi.org/10.1016/j.aquatox.2020.105720

    Article  PubMed  CAS  Google Scholar 

  245. Fu D, Hu Y, Chu P, Wang T, Chu M, Shi Y et al (2021) Histopathological and calreticulin changes in the liver and gill of Takifugu fasciatus demonstrate the effects of copper nanoparticle and copper sulphate exposure. Aquac Rep 20:100662. https://doi.org/10.1016/j.aqrep.2021.100662

    Article  Google Scholar 

  246. Fahmy HM, Ebrahim NM, Gaber MH (2020) In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. J Trace Elem Med Biol 60:126481. https://doi.org/10.1016/j.jtemb.2020.126481

    Article  PubMed  CAS  Google Scholar 

  247. Chen Y, Wu Y, Bian Y, Dong L, Zheng X, Chen Y (2022) Long-term effects of copper nanoparticles on volatile fatty acids production from sludge fermentation: Roles of copper species and bacterial community structure. Biores Technol 348:126789. https://doi.org/10.1016/j.biortech.2022.126789

    Article  CAS  Google Scholar 

  248. Razmara P, Imbery JJ, Koide E, Helbing CC, Wiseman SB, Gauthier PT et al (2021) Mechanism of copper nanoparticle toxicity in rainbow trout olfactory mucosa. Environ Pollut 284:117141. https://doi.org/10.1016/j.envpol.2021.117141

    Article  PubMed  CAS  Google Scholar 

  249. Janova A, Kolackova M, Bytesnikova Z, Capal P, Chaloupsky P, Svec P et al (2021) New insights into mechanisms of copper nanoparticle toxicity in freshwater algae Chlamydomonas reinhardtii: effects on the pathways of secondary metabolites. Algal Res 60:102476. https://doi.org/10.1016/j.algal.2021.102476

    Article  Google Scholar 

  250. Tesser ME, de Paula AA, Risso WE, Monteiro RA, do Espirito Santo Pereira A, Fraceto LF, et al (2020) Sublethal effects of waterborne copper and copper nanoparticles on the freshwater Neotropical teleost Prochilodus lineatus: a comparative approach. Sci Total Environ 704:135332. https://doi.org/10.1016/j.scitotenv.2019.135332

    Article  PubMed  CAS  Google Scholar 

  251. Shotop YM, Al-Suwiti IN (2021) The possible role of vitamins E and C in reducing the toxicity of copper nanoparticles in the kidney and liver of the rats (Rattus norvegicus). J King Saud Univ Sci 33:101357. https://doi.org/10.1016/j.jksus.2021.101357

    Article  Google Scholar 

  252. Anila PA, Sutha J, Nataraj D, Ramesh M (2021) In vivo evaluation of Nano-palladium toxicity on larval stages and adult of zebrafish (Danio rerio). Sci Total Environ 765:144268. https://doi.org/10.1016/j.scitotenv.2020.144268

    Article  PubMed  CAS  Google Scholar 

  253. Iavicoli I, Farina M, Fontana L, Lucchetti D, Leso V, Fanali C et al (2017) In vitro evaluation of the potential toxic effects of palladium nanoparticles on fibroblasts and lung epithelial cells. Toxicol In Vitro 42:191–199. https://doi.org/10.1016/j.tiv.2017.04.024

    Article  PubMed  CAS  Google Scholar 

  254. Aarzoo NS, Agarwal NB, Singh MP, Samim M (2021) Bio-engineered palladium nanoparticles: Model for risk assessment study of automotive particulate pollution on macrophage cell lines. RSC Adv 11:1850–1861. https://doi.org/10.1039/d0ra09336j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Kong L, Wu Y, Hu W, Liu L, Xue Y, Liang G (2021) Mechanisms underlying reproductive toxicity induced by nickel nanoparticles identified by comprehensive gene expression analysis in GC-1 spg cells. Environ Pollut 275:116556. https://doi.org/10.1016/j.envpol.2021.116556

    Article  PubMed  CAS  Google Scholar 

  256. Hu W, Kong L, Yu Z, Gao X, Wu Y, Tang M (2020) Study on the damage of sperm induced by nickel nanoparticle exposure. Environ Geochem Health 42:1715–1724. https://doi.org/10.1007/s10653-019-00364-w

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

There is no financial support.

Author information

Authors and Affiliations

Authors

Contributions

Mohd. Aslam, Abhay Giri Goswami, and Bhawna: collection of literature on experimental approach, draft of the manuscript; Vinod Kumar, Bhaskaranand Pant, Garima Pandey, and Indra Bahadur: draft preparation and review editing; Prashant Singh and Kamlesh Kumari: conceptualization and finalization of the manuscript.

Corresponding authors

Correspondence to Prashant Singh, Garima Pandey or Kamlesh Kumari.

Ethics declarations

Ethics Approval

It is a review manuscript and does not require and ethical approval.

Consent to Participate

All the authors have read the manuscript and given consent to submit the manuscript in this journal.

Consent to Publication

I further confirm that the order of authors listed in the manuscript has been approved by all of us.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Goswami, A.G., Bhawna et al. An Understanding for the Synthesis of Metal NPs to Photocatalysis to Toxicity. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02151-x

Keywords

Navigation