Skip to main content
Log in

A Perfect Absorber for Ultra-long-wave Infrared Based on a Cross-Shaped Resonator Structure

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

To satisfy the marking demand for microwave absorbing devices, we design an ultra-broadband nearly perfect absorber. The proposed absorber demonstrates absorption band from long to very long-wavelength ranges (15.7–37.9 µm). An average absorption efficiency of 95.16% and a satisfactory absorption bandwidth of 19.2 µm are achieved. The absorption with high absorptivity and large bandwidth is achieved through combined propagating surface plasmon (PSP) resonances in two directions and localized surface plasmon (LSP) resonances. By simulating and calculating the absorptivity, we demonstrate that the absorber possesses the properties of polarization independence and incident angle insensitivity. When the incident angle reaches 60°, the device still maintains a high absorptivity. Finally, the manufacturing process is illustrated, using radio frequency sputtering with dual guns or an E-beam. Compared with other related microwave absorbers, the proposed absorber balances the contradiction between absorption bandwidth and average absorption. We have strong confidence that the absorber has tremendous applications in many areas, such as infrared thermal emitters, imaging, and photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Ling F, Zhong Z, Huang R, Zhang B (2018) A broadband tunable terahertz negative refractive index metamaterial. Sci Rep 8(1):9843

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kamrava S, Mousanezhad D, Ebrahimi H, Ghosh R, Vaziri A (2017) Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci Rep 7(1):46046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kadic M, Milton GW, van Hecke M, Wegener M (2019) 3D metamaterials. Nat Rev Phys 1(3):198–210

    Article  Google Scholar 

  4. Valentine J, Zhang S, Zentgraf T, Ulin-Avil E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211):376–379

    Article  CAS  PubMed  Google Scholar 

  5. Hu H, Chen N, Teng H, Yu R, Xue M, Chen K, Dai Q (2023) Gate-tunable negative refraction of mid-infrared polaritons. Science 379(6632):558–561

    Article  CAS  PubMed  Google Scholar 

  6. Zhai SL, Zhao XP, Liu S, Shen FL, Li LL, Luo CR (2016) Inverse doppler effects in broadband acoustic metamaterials. Sci Rep 6(1):32388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ran J, Zhang Y, Chen X, Fang K, Zhao J, Sun Y, Chen H (2015) Realizing tunable inverse and normal Doppler shifts in reconfigurable RF metamaterials. Sci Rep 5(1):11659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sylvere AS, David V, Justin M, Joseph M, Betchewe G, Inc M (2023) Modulational instability in lossless left-handed metamaterials in nonlinear Schrödinger equation with non-integer dimensional space. Mod Phys Lett B 37(11):2350002

    Article  CAS  Google Scholar 

  9. Indrajeet S, Wang H, Hutchings MD, Taketani BG, Wilhelm FK, LaHaye MD, Plourde BLT (2020) Coupling a superconducting qubit to a left-handed metamaterial resonator. Phys Rev Appl 14(6):064033

    Article  CAS  Google Scholar 

  10. Cui TJ (2017) Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves. J Opt 19(8):084004

    Article  Google Scholar 

  11. Shi J, Li Z, Sang DK, Xiang Y, Li J, Zhang S, Zhang H (2018) THz photonics in two dimensional materials and metamaterials: properties, devices and prospects. J Mater Chem C 6(6):1291–1306

    Article  CAS  Google Scholar 

  12. Pu M, Ma X, Li X, Guo Y, Luo X (2017) Merging plasmonics and metamaterials by two-dimensional subwavelength structures. Journal of Materials Chemistry C 5(18):4361–4378

    Article  CAS  Google Scholar 

  13. Roh Y, Lee SH, Kwak J, Song HS, Shin S, Kim YK, Seo M (2022) Terahertz imaging with metamaterials for biological applications. Sens Actuators B Chem 352:130993

    Article  CAS  Google Scholar 

  14. Liu S, Cui TJ, Xu Q, Bao D, Du L, Wan X, Cheng Q (2016) Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci Appl 5(5):e16076–e16076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cong L, Cao W, Tian Z, Gu J, Han J, Zhang W (2012) Manipulating polarization states of terahertz radiation using metamaterials. New J Phys 14(11):115013

    Article  Google Scholar 

  16. Chen F, Yang WX (2022) Pressure sensor based on multiple Fano resonance in metal–insulator–metal waveguide coupled resonator structure. JOSA B 39(7):1716–1722

    Article  CAS  Google Scholar 

  17. Saadeldin AS, Hameed MFO, Elkaramany EM, Obayya SS (2019) Highly sensitive terahertz metamaterial sensor. IEEE Sens J 19(18):7993–7999

    Article  CAS  Google Scholar 

  18. Chen Z, Guo B, Yang Y, Cheng C (2014) Metamaterials-based enhanced energy harvesting: a review. Physica B 438:1–8

    Article  CAS  Google Scholar 

  19. Padilla WJ, Averitt RD (2022) Imaging with metamaterials. Nat Rev Phys 4(2):85–100

    Article  Google Scholar 

  20. Hess O, Pendry JB, Maier SA, Oulton RF, Hamm JM, Tsakmakidis KL (2012) Active nanoplasmonic metamaterials. Nat Mater 11(7):573–584

    Article  CAS  PubMed  Google Scholar 

  21. Ding F, Dai J, Chen Y, Zhu J, Jin Y, Bozhevolnyi SI (2016) Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci Rep 6(1):39445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou Y, Qin Z, Liang Z, Meng D, Xu H, Smith DR, Liu Y (2021) Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light Sci Appl 10(1):138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, He S (2014) Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev 8(4):495–520

    Article  CAS  Google Scholar 

  24. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  CAS  PubMed  Google Scholar 

  25. Gao H, Liang Y, Yu L, Chu S, Cai L, Wang F, Peng W (2021) Bifunctional plasmonic metamaterial absorber for narrowband sensing detection and broadband optical absorption. Opt Laser Technol 137:106807

    Article  CAS  Google Scholar 

  26. Wang W, Li Y, Chen F, Cheng S, Yang W, Wang B, Yi Z (2023) A TM polarization absorber based on a graphene–silver asymmetrical grating structure for near-infrared frequencies. Phys Chem Chem Phys 25(35):23855–23866

    Article  CAS  PubMed  Google Scholar 

  27. Kang S, Qian Z, Rajaram V, Calisgan SD, Alù A, Rinaldi M (2019) Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy. Adv Opt Mater 7(2):1801236

    Article  Google Scholar 

  28. Liao YL, Zhao Y (2020) Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications. Sci Rep 10(1):1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abbas MA, Kim J, Rana AS, Kim I, Rehman B, Ahmad Z, Rho J (2022) Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems. Nanoscale 14(17):6425–6436

    Article  CAS  PubMed  Google Scholar 

  30. Yu P, Besteiro LV, Huang Y, Wu J, Fu L, Tan HH, Wang Z (2019) Broadband metamaterial absorbers. Adv Opt Mater 7(3):1800995

    Article  Google Scholar 

  31. Jiang X, Liang B, Li RQ, Zou XY, Yin LL, Cheng JC (2014) Ultra-broadband absorption by acoustic metamaterials. Appl Phys Lett 105(24)

  32. Xie Y, Liu S, Huang K, Chen B, Shi P, Chen Z, Liu Z (2022) Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv Mater 34(30):2202982

    Article  CAS  Google Scholar 

  33. Qing YM, Ma HF, Cui TJ (2018) Tailoring anisotropic perfect absorption in monolayer black phosphorus by critical coupling at terahertz frequencies. Opt Express 26(25):32442–32450

    Article  CAS  PubMed  Google Scholar 

  34. Pan YZ, Li YC, Chen F, Cheng SB, Yang WX, Wang BY, Yao DZ (2023) An ultra-broadband solar absorber based on α-GST/Fe metamaterials from visible light to mid-infrared. Phys Chem Chem Phys 25(40):27586–27594

    Article  CAS  PubMed  Google Scholar 

  35. Liu G, Liu Y, Liu X, Chen J, Fu G, Liu Z (2018) Large-area, low-cost, ultra-broadband, infrared perfect absorbers by coupled plasmonic-photonic micro-cavities. Sol Energy Mater Sol Cells 186:142–148

    Article  CAS  Google Scholar 

  36. Ye L, Zeng F, Zhang Y, Liu QH (2019) Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range. Carbon 148:317–325

    Article  CAS  Google Scholar 

  37. Zhang X, Cui WY, Lei Y, Zheng X, Zhang J, Cui TJ (2021) Spoof localized surface plasmons for sensing applications. Adv Mater Technol 6(4):2000863

    Article  CAS  Google Scholar 

  38. Cheng Y, Sun M (2021) Unified treatments for localized surface plasmon resonance and propagating surface plasmon polariton based on resonance modes in metal nanowire. Opt Commun 499:127277

    Article  CAS  Google Scholar 

  39. Feng R, Qiu J, Liu L, Ding W, Chen L (2014) Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling. Opt Express 22(107):A1713–A1724

    Article  PubMed  Google Scholar 

  40. Mokhtari A, Rezaei MH, Zarifkar A (2023) Ultra-broadband absorber based on metamaterial resonators utilizing particle swarm optimization algorithm. Photonics Nanostruct Fundam Appl 53:101105

    Article  Google Scholar 

  41. Chen C, Liu Y, Jiang ZY, Shen C, Zhang Y, Zhong F, Liu H (2022) Large-area long-wave infrared broadband all-dielectric metasurface absorber based on maskless laser direct writing lithography. Opt Express 30(8):13391–13403

    Article  CAS  PubMed  Google Scholar 

  42. Xie T, Chen D, Xu Y, Wang Y, Li M, Zhang Z, Yang J (2022) High absorption and a tunable broadband absorption based on the fractal technology of infrared metamaterial broadband absorber. Diam Relat Mater 123:108872

    Article  CAS  Google Scholar 

  43. Liang S, Xu F, Yang H, Cheng S, Yang W, Yi Z, Tang C (2023) Ultra long infrared metamaterial absorber with high absorption and broad band based on nano cross surrounding. Opt Laser Technol 158:108789

    Article  CAS  Google Scholar 

  44. Zhou Y, Liang Z, Qin Z, Hou E, Shi X, Zhang Y, Lai J (2020) Small–sized long wavelength infrared absorber with perfect ultra–broadband absorptivity. Opt Express 28(2):1279–1290

    Article  CAS  PubMed  Google Scholar 

  45. Sun L, Liu D, Su J, Li X, Zhou S, Wang K, Zhang Q (2022) Near perfect absorber for long-wave infrared based on localized surface plasmon resonance. Nanomaterials 12(23):4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen S, Li Z, Wu L, Wang W, Teng X (2023) Ultra-long-wave infrared broadband absorber based on a nano-resonant ring structure. Opt Mater Express 13(6):1579–1588

    Article  CAS  Google Scholar 

  47. Zhou J, Kaplan AF, Chen L, Guo LJ (2014) Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array. ACS Photonics 1(7):618–624

    Article  CAS  Google Scholar 

  48. Ding F, Cui Y, Ge X, Jin Y, He S (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100(10)

Download references

Funding

This study is supported by the National Natural Science Foundation of China (Grant Nos. 11747091, 11647122); The Natural Science Foundation of Hubei Province, China (Grant No. 2022CFB475); and Yangtze University college students’ innovation and entrepreneurship (Grant No. Yz2022278).

Author information

Authors and Affiliations

Authors

Contributions

YP: conceptualization, supervision, investigation, methodology, validation, formal analysis. YL: investigation, methodology, software, formal analysis, writing—original draft, writing—review and editing. FC: investigation, methodology, software, formal analysis, writing—original draft, writing—review and editing, funding acquisition. WY: supervision, supervision. BW: formal analysis, funding acquisition.

Corresponding author

Correspondence to Fang Chen.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Li, Y., Chen, F. et al. A Perfect Absorber for Ultra-long-wave Infrared Based on a Cross-Shaped Resonator Structure. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02137-9

Keywords

Navigation