Skip to main content
Log in

Thermally Switchable Metasurface for Controlling Transmission in the THz-gap

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper presents a metasurface (MS) providing single to dual transmission frequency bands under different thermal excitation conditions. Vanadium dioxide (VO2) has been incorporated into a metallic MS design to generate a switching feature under temperature variations. The proposed VO2-based MS offers dual band transmission responses at 1.4 THz and 2.66 THz at room temperature (300 K). The same structure exhibits single band transmission response at 1.4 THz by rejecting the higher band, when the VO2 layer is acting as a metal under thermally heated condition (above 340 K). The device is polarization-insensitive due to four-fold symmetry and transmission performance has been found to be angularly stable up to 40° for both insulating as well as metallic phases. The device responses at two distinct states have also been verified by an equivalent circuit model. This device can find potential applications towards upcoming 6G and futuristic communication systems involving terahertz (THz) frequency band as well as shielding purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data will be available on request.

References

  1. Bhattacharyya S (2021) Metamaterials and metasurfaces for high-frequency applications. In: Photonics, Plasmonics and Information Optics,CRC Press, pp 31–66

  2. Pang Y, Li Y, Qu B, Yan M, Wang J, Qu S, Xu Z (2020) Wideband RCS reduction metasurface with a transmission window. IEEE Trans Antennas Propag 68(10):7079–7087

    Article  Google Scholar 

  3. Samantaray D, Ghosh SK, Bhattacharyya S (2023) Modified slotted patch antenna with metasurface as superstrate for dual-band applications. IEEE Antennas Wirel Propag Lett 22(1):109–113

    Article  Google Scholar 

  4. Bhattacharyya S, Srivastava KV (2014) Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. J Appl Phys 115(6)

  5. Ghosh SK, Das S, Bhattacharyya S (2022) Graphene-based metasurface for tunable absorption and transmission characteristics in the near mid-infrared region. IEEE Trans Antennas Propag 70(6):4600–4612

    Article  Google Scholar 

  6. Ghosh SK, Das S, Bhattacharyya S (2021) Graphene-based dual functional metadevice in the thz gap. Appl Opt 60(36):11247–11255

    Article  CAS  Google Scholar 

  7. Ghosh SK, Das S, Bhattacharyya S (2022) Terahertz wave conversion from linear to circular polarization by graphene metasurface featuring ultrawideband tunability. J Lightwave Technol 40(20):6676–6684

    Article  CAS  Google Scholar 

  8. Dey S, Dey S, Koul SK (2022) Second-order, single-band and dual-band bandstop frequency selective surfaces at millimeter wave regime. IEEE Trans Antennas Propag 70(8):7282–7287

    Article  Google Scholar 

  9. Yadav VS, Ghosh SK, Bhattacharyya S, Das S (2018) Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence. Appl Opt 57(29):8720–8726

    Article  CAS  PubMed  Google Scholar 

  10. Bakshi SC, Mitra D, Teixeira FL (2020) Fss-based fully reconfigurable rasorber with enhanced absorption bandwidth and simplified bias network. IEEE Trans Antennas Propag 68(11):7370–7381

    Article  Google Scholar 

  11. Lin B, Guo J, Chu P, Li N, Wu L, Liu X (2018) Varactor-tunable frequency selective surface with an appropriate embedded bias network. Radio Sci 53(4):535–543

    Article  Google Scholar 

  12. Kong P, Yu X, Liu Z, Zhou K, He Y, Miao L, Jiang J (2014) A novel tunable frequency selective surface absorber with dual-dof for broadband applications. Opt Express 22(24):30217–30224

    Article  PubMed  Google Scholar 

  13. Ghosh SK, Yadav VS, Das S, Bhattacharyya S (2020) Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (MIR) range. IEEE Trans Electromagn Compat 62(2):346–354

    Article  Google Scholar 

  14. Varshney AK, Pathak NP, Sircar D (2022) Low-profile frequency reconfigurable graphene-based dipole antennas loaded with wideband metasurface for THz applications. Plasmonics 17(6):2351–2363

    Article  CAS  Google Scholar 

  15. He J, Zhang M, Shu S, Yan Y, Wang M (2020) VO\(^{2}\) based dynamic tunable absorber and its application in switchable control and real-time color display in the visible region. Opt Express 28(25):37590–37599

  16. Paul A, Nilotpal, Bhattacharyya S, Dwivedi S (2022) Digital metasurface for selective information distribution in the spatial domain in the thz region. Appl Opt 61(7):1624–1631

  17. Sieber PE, Werner DH (2013) Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces. Opt Express 21(1):1087–1100

    Article  CAS  PubMed  Google Scholar 

  18. Shah AR, Naveed MA, Ijaz S, Rahim AA, Zubair M, Massoud Y, Mehmood MQ (2023) A functionality switchable meta-device: from perfect reflection to perfect absorption. Phys Scr 98(9):095514

    Article  Google Scholar 

  19. Wan C, Zhang Z, Woolf D, Hessel CM, Rensberg J, Hensley JM, Xiao Y, Shahsafi A, Salman J, Richter S, Sun Y, Qazilbash MM, Schmidt-Grund R, Ronning C, Ramanathan S, Kats MA (2019) On the optical properties of thin-film vanadium dioxide from the visible to the far infrared. Ann Phys 531(10):1900188

    Article  CAS  Google Scholar 

  20. Xu Z, Chen C, Wang Z, Wu K, Chong H, Ye H (2018) Optical constants acquisition and phase change properties of Ge\(^{2}\)Sb\(^{2}\)Te\(^{5}\) thin films based on spectroscopy. RSC Adv 8:21040–21046

  21. Jayalakshmi G, Saravanan K, Panigrahi BK, Sundaravel B, Gupta M (2018) Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation. Nanotechnology 29(18):185701

    Article  CAS  PubMed  Google Scholar 

  22. Dash S, Patnaik A (2018) Performance of graphene plasmonic antenna in comparison with their counterparts for low-terahertz applications. Plasmonics 13(6):2353–2360

    Article  CAS  Google Scholar 

  23. Naveed MA, Ansari MA, Kim I, Badloe T, Kim J, Oh DK, Riaz K, Tauqeer T, Younis U, Saleem M, Anwar MS, Zubair M, Mehmood MQ, Rho J (2021) Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsyst Nanoeng 7(1)

  24. Naveed MA, Kim J, Javed I, Ansari MA, Seong J, Massoud Y, Badloe T, Kim I, Riaz K, Zubair M, Mehmood MQ, Rho J (2022) Novel spin-decoupling strategy in liquid crystal-integrated metasurfaces for interactive metadisplays. Adv Opt Mater 10(13):2200196

    Article  CAS  Google Scholar 

  25. Sitnikov DS, Ilina IV, Revkova VA, Rodionov SA, Gurova SA, Shatalova RO, Kovalev AV, Ovchinnikov AV, Chefonov OV, Konoplyannikov MA, Kalsin VA, Baklaushev VP (2021) Effects of high intensity non-ionizing terahertz radiation on human skin fibroblasts. Biomed Opt Express 12(11):7122–7138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lindley-Hatcher H, Stantchev RI, Chen X, Hernandez-Serrano AI, Hardwicke J, Pickwell-MacPherson E (2021) Real time thz imaging-opportunities and challenges for skin cancer detection. Appl Phys Lett 118(23):230501

    Article  CAS  Google Scholar 

  27. Wei L, Yu L, Jiaoqi H, Guorong H, Yang Z, Weiling F (2018) Application of terahertz spectroscopy in biomolecule detection. Front Lab Med 2(4):127–133

    Article  Google Scholar 

  28. Liu H-B, Zhong H, Karpowicz N, Chen Y, Zhang X-C (2007) Terahertz spectroscopy and imaging for defense and security applications. Proc IEEE 95(8):1514–1527

    Article  CAS  Google Scholar 

  29. Mohanty A, Acharya OP, Appasani B, Mohapatra SK, Khan MS (2021) Design of a novel terahertz metamaterial absorber for sensing applications. IEEE Sens J 21(20):22688–22694

    Article  Google Scholar 

  30. Ghosh SK, Das S, Bhattacharyya S (2021) Transmittive-type triple-band linear to circular polarization conversion in thz region using graphene-based metasurface. Opt Commun 480:126480

    Article  CAS  Google Scholar 

  31. Shahounvand H, Fard A (2020) Design and simulation of a new narrow terahertz bandpass filter. SN Appl Sci 2(11)

  32. Shavit R (2018) Frequency selective surfaces (FSS) radomes. In: Radome Electromagnetic Theory and Design, John Wiley & Sons Ltd, pp 39–88

  33. Lalbakhsh A, Afzal MU, Esselle KP, Smith SL (2022) All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations. IEEE Trans Antennas Propag 70(4):2790–2800

    Article  Google Scholar 

  34. Niharika N, Singh S, Kumar P (2022) Multifunctional metasurface based bandstop and bandpass filters for terahertz radiation. Optik 253:168551

    Article  CAS  Google Scholar 

  35. Wang DS, Chen BJ, Chan CH (2016) High-selectivity bandpass frequency-selective surface in terahertz band. IEEE Trans Terahertz Sci Technol 6(2):284–291

    Article  Google Scholar 

  36. Yan M, Wang J, Ma H, Feng M, Pang Y, Qu S, Zhang J, Zheng L (2016) A tri-band, highly selective, bandpass FSS using cascaded multilayer loop arrays. IEEE Trans Antennas Propag 64(5):2046–2049

    Article  Google Scholar 

  37. Han Y, Liao S, Xiu X, Li B, Chang Y, Xue Q, Che W (2022) Bandstop frequency selective surfaces based on aramid paper honeycomb structure. IEEE Trans Antennas Propag 70(9):8164–8172

    Article  Google Scholar 

  38. Yadav S, Jain CP, Sharma MM (2019) Smartphone frequency shielding with penta-bandstop FSS for security and electromagnetic health applications. IEEE Trans Electromagn Compat 61(3):887–892

    Article  Google Scholar 

  39. Zahra S, Ma L, Wang W, Li J, Chen D, Liu Y, Zhou Y, Li N, Huang Y, Wen G (2021) Electromagnetic metasurfaces and reconfigurable metasurfaces: a review. Front Phys 8

  40. Yaxin Z, Hongxin Z, Wei K, Lan W, Mittleman DM, Ziqiang Y (2020) Terahertz smart dynamic and active functional electromagnetic metasurfaces and their applications. Philos Trans R Soc A Math Phys Eng Sci 378(2182):20190609

    Article  Google Scholar 

  41. Fujii T, Ando A, Sakabe Y (2006) Characterization of dielectric properties of oxide materials in frequency range from GHz to THz. J Eur Ceram Soc 26(10):1857–1860

    Article  CAS  Google Scholar 

  42. Yang HU, D’Archangel J, Sundheimer ML, Tucker E, Boreman GD, Raschke MB (2015) Optical dielectric function of silver. Phys Rev B 91:235137

    Article  Google Scholar 

  43. CST Studio Suite-User’s Manual (2017) Darmstadt, Germany. Comput Simul Technol

  44. Agrahari R, Lakhtakia A, Kumar Jian P, Bhattacharyya S (2022) Pixelated metasurfaces for linear-polarization conversion and absorption. J Electromagn Waves Appl 36(7):1008–1019

  45. Sun M, Lv T, Liu Z, Wang F, Li W, Zhang Y, Zhu Z, Guan C, Shi J (2022) Vo2-enabled transmission-reflection switchable coding terahertz metamaterials. Opt Express 30(16):28829–28839

    Article  CAS  PubMed  Google Scholar 

  46. Li X, Tang S, Ding F, Zhong S, Yang Y, Jiang T, Zhou J (2019) Switchable multifunctional terahertz metasurfaces employing vanadium dioxide. Sci Rep 9(1):5454

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mou N, Tang B, Li J, Dong H, Zhang L (2022) Switchable ultra-broadband terahertz wave absorption with VO\(^{2}\)-based metasurface. Sci Rep 12(1):1–8

  48. Wang X, Wu G, Wang Y, Liu J (2023) Terahertz broadband adjustable absorber based on VO\(^{2}\) multiple ring structure. Appl Sci 13(1)

Download references

Acknowledgements

NK and SB acknowledge SERB, Govt. of India for providing financial support for this work.

Funding

Science and Engineering Research Board (SERB) (CRG/2021/000947), Indian Space Research Organization (ISRO).

Author information

Authors and Affiliations

Authors

Contributions

NK: Manuscript Preparation and carrying out the work SKG: Monitoring NK and developing circuit model SB: Overall supervision and manuscript preparation All authors reviewed the manuscript.

Corresponding author

Correspondence to Somak Bhattacharyya.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Ghosh, S.K. & Bhattacharyya, S. Thermally Switchable Metasurface for Controlling Transmission in the THz-gap. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02115-1

Keywords

Navigation