Skip to main content
Log in

MXene-Based Kretschmann Configured Surface Plasmon Resonance Sensor in Visible Regime

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The proposed work exhibits the novel Kretschmann (K)-surface plasmon resonance (SPR) sensor structure based on the cobalt and 2D material MXene (Ti3C2Tx). The performance of a silver (Ag)-cobalt (Co) (bimetallic)-based SPR sensor is numerically investigated by the transfer matrix method (TMM) for the analysis of light propagation through the proposed layers. Additionally, the electric field intensity and penetration depth (PD) are analyzed by the finite element method (FEM) using COMSOL Multiphysics. The cobalt confirms the large magneto-optical activity suitable for plasmonics. The optimization of the Ag-Co metals and MXene thickness enhances the sensitivity of the proposed sensor with the minimum reflectance (Rmin). Two-dimensional (2D) material of MXene enhances the sensitivity and protects the bimetals (Ag-Co) from oxidation. The highest sensitivity of 272.38°/RIU is achieved with the proposed sensor, and it is convenient in the medical and life science field to detect biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

The figures and tables used to support the findings of this study are included in the article.

References

  1. Uniyal A, Chauhan B, Pal A, Srivastava V (2022) InP and graphene employed surface plasmon resonance sensor for measurement of sucrose concentration: a numerical approach. Opt Eng 61(05):57103. https://doi.org/10.1117/1.oe.61.5.057103

    Article  CAS  Google Scholar 

  2. Uniyal A, Srivastava G, Pal A, Taya S, Muduli A (2023) Recent advances in optical biosensors for sensing applications: a review. Plasmonics 18(2):735–750. https://doi.org/10.1007/s11468-023-01803-2

    Article  CAS  Google Scholar 

  3. Pal A et al (2023) Detecting binary mixtures of sulfolane with ethylene glycol, diethylene glycol, and polyethylene glycol in water using surface plasmon resonance sensor: a numerical investigation. Plasmonics. https://doi.org/10.1007/s11468-023-02054-x

    Article  Google Scholar 

  4. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493. https://doi.org/10.1021/cr068107d

    Article  CAS  PubMed  Google Scholar 

  5. Piliarik M, Párová L, Homola J (2009) High-throughput SPR sensor for food safety. Biosens Bioelectron 24(5):1399–1404. https://doi.org/10.1016/j.bios.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  6. Fallah H et al (2020) Utilizing ZnO Nanorods for CO gas detection by SPR technique. Opt Commun 463. https://doi.org/10.1016/j.optcom.2020.125490

  7. Karki B, Uniyal A, Chauhan B, Pal A (2022) Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region. J Comput Electron 21(2):445–452. https://doi.org/10.1007/s10825-022-01854-4

    Article  CAS  Google Scholar 

  8. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Zeitschrift fur Naturforsch. - Sect A J Phys Sci 23(12):2135–2136. https://doi.org/10.1515/zna-1968-1247

  9. Karki B, Uniyal A, Sharma T, Pal A, Srivastava V (2022) Indium phosphide and black phosphorus employed surface plasmon resonance sensor for formalin detection: numerical analysis. Opt Eng 61(01):017101–017114. https://doi.org/10.1117/1.oe.61.1.017101

    Article  CAS  Google Scholar 

  10. Karki B, Uniyal A, Pal A, Srivastava V (2022) Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. Int J Opt 2022:1476254. https://doi.org/10.1155/2022/1476254

    Article  CAS  Google Scholar 

  11. Piliarik M, Homola J (2006) SPR sensor instrumentation. J. Homola, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg. 95–116. https://doi.org/10.1007/5346_016

  12. Pal A, Jha A (2021) A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets. Optik (Stuttg) 231:166378

  13. Singh MK, Pal S, Prajapati YK, Saini JP (2020) Sensitivity improvement of surface plasmon resonance sensor on using BlueP/MoS 2 heterostructure and antimonene. IEEE Sensors Lett 4(7). https://doi.org/10.1109/LSENS.2020.3005942

  14. Uniyal A et al (2023) Surface plasmon resonance biosensor sensitivity improvement employing of 2D materials and BaTiO3 with bimetallic layers of silver. J Mater Sci Mater Electron 34(6):466. https://doi.org/10.1007/s10854-023-09821-w

    Article  CAS  Google Scholar 

  15. Maharana PK, Srivastava T, Jha R (2014) On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics 9(5):1113–1120. https://doi.org/10.1007/s11468-014-9721-4

    Article  CAS  Google Scholar 

  16. Srivastava T, Jha R, Das R (2011) High-performance bimetallic SPR sensor based on periodic-multilayer- waveguides. IEEE Photonics Technol Lett 23(20):1448–1450. https://doi.org/10.1109/LPT.2011.2162828

    Article  CAS  Google Scholar 

  17. Shukla S, Sharma NK, Sajal V (2016) Theoretical study of surface plasmon resonance-based fiber optic sensor utilizing cobalt and nickel films. Brazilian J Phys 46(3):288–293. https://doi.org/10.1007/s13538-016-0406-7

    Article  CAS  Google Scholar 

  18. Dash JN, Jha R (2014) Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol Lett 26(11):1092–1095. https://doi.org/10.1109/LPT.2014.2315233

    Article  CAS  Google Scholar 

  19. Sharma AK, Gupta BD (2007) On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J Appl Phys 101(9). https://doi.org/10.1063/1.2721779

  20. Jha R, Sharma AK (2009) Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region. J Opt A Pure Appl Opt 11(4). https://doi.org/10.1088/1464-4258/11/4/045502

  21. Fouad S, Sabri N, Jamal ZAZ, Poopalan P (2016) Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate. Жypнaл нaнo-тa eлeктpoннoї фiзики no. 8,№ 4(2):4081–4085

  22. Kravets VG et al (2014) Graphene-protected copper and silver plasmonics. Sci Rep 4(1):5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suresh NV, Rajesh KB, Pillai TVS (2021) Sensitivity enhancement of surface plasmon resonance sensor using Al–Au–BaTiO 3–Graphene layers. J Opt 50:152–159

    Article  Google Scholar 

  24. Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens Actuators B Chem 107(1):40–46. https://doi.org/10.1016/j.snb.2004.08.030

  25. Yu X, Yuan Y, Xiao B, Li Z, Qu J, Song J (2018) Flexible plasmonic pressure sensor based on layered two-dimensional heterostructures. J Light Technol 36(23):5678–5684

    Article  CAS  Google Scholar 

  26. Kumar R, Pal S, Prajapati YK, Saini JP (2021) Sensitivity enhancement of MXene based SPR sensor using silicon: theoretical analysis. https://doi.org/10.1007/s12633-020-00558-3/Published

  27. Wu L et al (2018) Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens Actuators B Chem 277:210–215. https://doi.org/10.1016/j.snb.2018.08.154

    Article  CAS  Google Scholar 

  28. Srivastava A, Verma A, Das R, Prajapati YK (2020) A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik (Stuttg) 203. https://doi.org/10.1016/j.ijleo.2019.163430

  29. Singh MK, Pal S, Verma A, Mishra V, Prajapati YK (2021) Sensitivity enhancement using anisotropic black phosphorus and antimonene in bi-metal layer-based surface plasmon resonance biosensor. Superlattices Microstruct 156:106969. https://doi.org/10.1016/j.spmi.2021.106969

    Article  CAS  Google Scholar 

  30. Maheswari P, Ravi V, Rajesh KB, Rahman SMH, Jha R (2023) High performance SPR biosensor using Cu-Pt bimetallic layers and 2D materials. Dig J Nanomater Biostructures 18(1)

  31. Kumar R, Pal S, Verma A, Prajapati YK, Saini JP (2020) Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct 145. https://doi.org/10.1016/j.spmi.2020.106591

  32. Singh Y, Paswan MK, Raghuwanshi SK (2021) Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with bi-layer of gold for chemical sensing. Plasmonics 16:1781–1790

    Article  CAS  Google Scholar 

  33. Jawad A, Arifuzzaman S, Anower MS, Ferdous AI, Anwer TM, Ahammad SH, Hossain A, Rashed AN (2023) Modeling and performance analysis of an advanced hybrid surface plasmon resonance (SPR) sensor employing indium tin oxide-phosphorene hetero structure. Plasmonics 18(4):1391–1401. https://doi.org/10.1007/s11468-023-01861-6

    Article  CAS  Google Scholar 

  34. Kashyap R, Baruah UR, Gogoi A, Mondal B (2023) Sensitivity-enhanced surface plasmon resonance sensor based on zinc oxide and BlueP-MoS2 heterostructure. Plasmonics 18(5):1679–1693. https://doi.org/10.1007/s11468-023-01884-z

    Article  CAS  Google Scholar 

  35. Kumar R, Pal S, Prajapati YK, Kumar S, Saini JP (2022) Sensitivity improvement of a MXene- immobilized SPR sensor with Ga-doped-ZnO for biomolecules detection. IEEE Sens J 22(7):6536–6543. https://doi.org/10.1109/JSEN.2022.3154099

    Article  CAS  Google Scholar 

Download references

Funding

This work was sponsored in part by the Raining Program for Young Core Teachers of Colleges and Universities in Henan Province (2018GGJS190)—Research on automatic apple grading system based on machine vision and 2022 Scientific Research Project of Shangqiu Institute of Technology (2022KYXM02)—Research on the quality detection method of fresh jujube based on machine vision.

Author information

Authors and Affiliations

Authors

Contributions

Liping Zhao is responsible for the conceptualization and methodology work, Degang Wu finished the investigation work, and Qianhui Chen is responsible for the supervision work.

Corresponding author

Correspondence to Liping Zhao.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wu, D. & Chen, Q. MXene-Based Kretschmann Configured Surface Plasmon Resonance Sensor in Visible Regime. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02097-0

Keywords

Navigation