Skip to main content
Log in

Highly Confined Terahertz Surface Plasmons Generation in Graphene-Coated Optical Fiber by Nonlinear Mixing of Two Laser Beams

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene is a most suitable 2D material for Terahertz surface plasmons generation (THz-SPs). An efficient mechanism of THz SPs generation in graphene-coated optical fiber is proposed. The thickness of the graphene sheet and radius of an optical fiber are important parameters to influence the THz SPs resonant frequency. Two lasers exert a ponderomotive force at difference frequency on the electrons in graphene and it induces a nonlinear current which driving the THz SPs. The normalized amplitude of graphene THz SPs decreases with frequency because the nonlinear coupling gets weaker. This scheme will be useful making the compact THz GPs source, THz plasmon sensors, and would be useful for making the graphene cylindrical waveguide have applications in various disciplines of science and medical science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article.

Code Availability

Not applicable.

References

  1. Ferguson B, Zhang X-C (2002) Nat Mater 1:26

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Huber R, Tauser F, Brodschelm A, Bichler M, Abstreiter G, Leitenstorfer A (2001) Nature 414:286

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Nagel M, Brucherseifer M, Bolivar PH, Kurz H, Bosserhoff A, Buttner R (2002) Appl Phys Lett Appl Phys Lett 80:154

    Article  ADS  CAS  Google Scholar 

  4. Grischkowsky D, Søren Keiding, Martin van Exter, Ch Fattinger J (2006) Opt Soc Am B 7:(1990)

  5. Mittleman DM, Jacobsen RH, Nuss MC (1996) IEEE. J Selected Topics in Quantum Electronics 2:679

    Article  ADS  CAS  Google Scholar 

  6. Beard MC, Turner GM, Schmuttenmaer CA (2001) J Appl Phys 90:5915

    Article  ADS  CAS  Google Scholar 

  7. Federici J, Moeller L, Shen YC, Lo T, Taday PF, Cole BE, Tribe WR, Kemp MC (2005) Appl Phys Lett 86:241116

    Article  ADS  Google Scholar 

  8. Spangle P, Penano JR, Hafizi B, Kapetanakas CA (2004) Phy Rev E 69:066415

    Article  ADS  Google Scholar 

  9. Zhao J. Zhang Y, Wang Z, Chu W, Zeng B, Liu  YZ, Cheng  Xu (2014) Laser Phys Lett 11:095302

  10. Cicėnas P, Geižutis A, Malevich VL, Krotkus A (2015) Opt Letts  40:(22)5164 

  11. Zhang X-C, Jin Y, Kingsley LE, Weiner M (1993) Appl Phys Lett 62:2477

    Article  ADS  CAS  Google Scholar 

  12. Hamster H, Sullivan A, Gordon S, White W, Falcone RW (1993) Phys Rev Lett 71:2725

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Antonsen Jr TM, Palastro J, Howard Milchberg M (2007) Phys Plasmas 14:033107

  14. Xu Xie, Jingzhou Xu, Jianming Dai,  Zhang X-C (2007) Appl Phys Lett 90:141104

  15. Cook DJ, Hochstrasser RM (2000) Opt Lett 25:1210

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Ozbay E (2006) Science 311:189

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Barnes Dereux A,  Ebbesen TW (2003) Nature 424:824 

  18. Liu H, Lee Y, Xiong C (2007) Sun and X. Zhang, Science 315:1686

    ADS  CAS  PubMed  Google Scholar 

  19. Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim SW (2008) Nature 453:757

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Bozhevolnyi I, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Nature 440:508

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Kumar P, Tripathi VK, Liu CS (2008) J Appl Phys 104:033306

    Article  ADS  Google Scholar 

  22. Bergman DJ, Stockman MI (2003) Phys Rev Lett 90:027402

    Article  ADS  PubMed  Google Scholar 

  23. Catchpole KR, Polman A (2008) Opt Express 16:21793

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Homola Yee SS, Gauglitz G (1999) Sens Actuators B 54(3) 

  25. Raether H (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin

    Book  Google Scholar 

  26. Boardman D (1982) Electromagnetic Surface Modes. Wiley, New York

    Google Scholar 

  27. Maier SA (2007) Plasmonics: Fundamentals and Applications. Springer-Verlag, New York

    Book  Google Scholar 

  28. Pendry JB, Martin-Moreno L, Garcia-Vidal FJ (2004) Science 305:847

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Garcia-Vidal FJ, Martin-Moreno L, Pendry JB (2005) J Opt A: Pure Appl Opt 7:S97

    Article  ADS  Google Scholar 

  30. Williams CR, Andrews SR, Maier SA, Fernandez-Domınguez AI, Martın-Moreno L, Garcıa-Vidal FJ (2008) Nature Photon 2:175

    Article  ADS  CAS  Google Scholar 

  31. Pawan Kumar VK, Tripathi (2013) J Appl Phys 114:053101 

  32. Pawan Kumar, Tripathi VK (2013) Opt Lett 38(18):3475

  33. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Nature 438:201

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Geim AK (2009) Science 324:1530

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Basov DN, Fogler MM, Lanzara A, Wang F, Zhang Y (2014) Rev Modern Phys 86:959

    Article  ADS  CAS  Google Scholar 

  37. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wallace PR (1947) Phys Rev 71:622

    Article  ADS  CAS  Google Scholar 

  39. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109 

  40. Grigorenko AN, Palini M, Novoselov KS (2012) Nat Photonics 6:749

    Article  ADS  CAS  Google Scholar 

  41. Wong LJ, Kaminer I, Ilic O, Joannopoulos JD, Soljačić M (2016) Nat Photonics 10:46

    Article  ADS  CAS  Google Scholar 

  42. Constant TJ, Hornett SM, Chang DE, Hendry E (2015) Nat Phys 12:124

    Article  Google Scholar 

  43. Yao B, Liu Y, Huang S-W, Choi C, Xie Z, Flores JF, Wu Y, Yu M, Kwong D-L, Huang Y, Rao Y, Duan X, Wong CW (2018) Nat Photon 12:22

    Article  ADS  CAS  Google Scholar 

  44. Yao XH, Tokman M, Belyanin A (2014) Phys Rev Lett 112:055501

    Article  ADS  PubMed  Google Scholar 

  45. Neha Verma, Anil Govindan and Pawan Kumar (2020) Plasmonics 15(6)

  46. Liu S, Zhang C, Hu M, Chen X, Zhang P, Gong S, Zhao T, Zhong R (2014) Appl Phys Lett 104:201104

    Article  ADS  Google Scholar 

  47. Yixiao Gao, Guobin Ren, Bofeng Zhu, Huaiqing Liu, Yudong Lian, Shuisheng Jian  (2014) Optics Express 22(20):24322 

  48. Qasymeh M (2016) IEEE J Quantum Electron 52(4):8500207

    Article  Google Scholar 

  49. Qasymeh M (2017) IEEE/OSA Journal of Lightwave Technology 35(9):1654

    Article  ADS  CAS  Google Scholar 

  50. Qasymeh M (2012) International Journal of Optics 2012:486

    Article  Google Scholar 

  51. Yu Wu, Baicheng Yao, Anqi Zhang, Yunjiang Rao, Zegao Wang, Yang Cheng, Yuan Gong, Weili Zhang, Yuanfu Chen, Chiang KS (2014) Optics Letters 39(5):1235 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors Neha Verma, Anil Govindan, and Pawan Kumar contributed equally to this work.

Corresponding author

Correspondence to Pawan Kumar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, N., Govindan, A. & Kumar, P. Highly Confined Terahertz Surface Plasmons Generation in Graphene-Coated Optical Fiber by Nonlinear Mixing of Two Laser Beams. Plasmonics 19, 395–401 (2024). https://doi.org/10.1007/s11468-023-01973-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01973-z

Keywords

Navigation