Skip to main content
Log in

Experimental and Numerical Investigation on Plasmonic Properties of Single-Sprouted Potato-Shaped Au-Ag Bimetallic Nanoparticles

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Herein, we report the experimental and theoretical study on scattering spectra of single-sprouted potato-shaped Au-Ag bimetallic nanoparticles. In detail, first, the sprouted potato-shaped nanoparticles are synthesized using the wet-chemistry method, and the morphology of the nanoparticles is studied using a field emission scanning electron microscope. Moreover, the scattering images and spectra of single nanoparticles of different sizes are captured using a dark field microscope. The finite element method (FEM) simulations are performed on these nanoparticles and investigated the dependence of the far-field scattering spectra and local field distribution on the morphology of the nanoparticles (i.e. size and shape of the sprouts and the nanoparticle bases or cores on which the sprouts are anchored).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wang Y, Irudayaraj J (2013) Surface-enhanced Raman Spectroscopy at Single-molecule Scale and its Implications in Biology. Phil Trans R Soc B 368:20120026. https://doi.org/10.1098/RSTB.2012.0026

  2. Yu Y et al (2020) Roadmap for Single-Molecule Surface-enhanced Raman Spectroscopy. Adv. Photonics 2:014002. https://doi.org/10.1117/1.AP.2.1.014002

  3. Kang M et al (2022) Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature. Nat Commun 13:4133. https://doi.org/10.1038/s41467-022-31576-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Flygare WH (1978) Molecular Structure and Dynamics (Englewood Cliffs, N. J: Prentice-Hall)

  5. Dies H, Siampani M, Escobedo C, Docoslis A (2018) Direct Detection of Toxic Contaminants in Minimally Processed Food Products Using Dendritic Surface-Enhanced Raman Scattering Substrates. Sensors 18:2726. https://doi.org/10.3390/s18082726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mahata T, Das GM, Dantham VR (2021) Study of Surface Enhanced Raman Scattering of IR-780 Iodide Molecules using Au-Ag Bimetallic Nanostructers with Blunt and Sharp Sprouts. Spectrochim. Acta A Mol Biomol Spectrosc 249:119262. https://doi.org/10.1016/j.saa.2020.119262

  7. Huang J-S, Yang Y-T (2015) Origin and Future of Plasmonic Optical Tweezers. Nanomaterials 5:1048–1065. https://doi.org/10.3390/nano5021048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y et al (2021) Plasmonic tweezers: for nanoscale optical trapping and beyond Light. Sci Appl 10(59). https://doi.org/10.1038/s41377-021-00474-0

  9. Genevet P et al (2010) Large Enhancement of Nonlinear Optical Phenomena by Plasmonic Nanocavity Gratings. Nano Lett 10:4880–4883. https://doi.org/10.1021/nl102747v

    Article  CAS  PubMed  Google Scholar 

  10. Chaitanya K, Mark Heron B, Ju X-H (2017) Influence of a Local Electric Field on the Light Harvesting Efficiency of a Cyclopentadithiophene-bridged D-A-π-A Indoline Dye on Pure and N-doped TiO2 Surfaces. Elsevier Sci 141:501–511

    CAS  Google Scholar 

  11. Wu JW, Cong R, Xu S, Liu YF (2022) Spatially Modulated Light Harvesting with Plasmonic Crescent Metasurface. Opt Lett 47:6440–6443. https://doi.org/10.1364/OL.478778

    Article  CAS  PubMed  Google Scholar 

  12. Cheng Y et al (2020) Strongly Enhanced Local Electromagnetic Field in Mid-infrared and Terahertz Photodetectors Employing a Hybrid Antenna. AIP Advances 10:015048. https://doi.org/10.1063/1.5128270

  13. Pertsch P, Kullock R, Gabriel V, Zurak L, Emmerling M, Hecht B (2022) Tunable Nanoplasmonic Photodetectors. Nano Lett. 22(17):6982–6987. https://doi.org/10.1021/acs.nanolett.2c01772

  14. Yao GY, Liu QL, Zhao ZY (2019) Applications of Localized Surface Plasmon Resonance Effect in Photocatalysis. Prog. Chem. 31(4):516–535. https://doi.org/10.7536/PC180810

    Article  CAS  Google Scholar 

  15. de Souza ML, dos Santos DP, Coprio P (2018) Localized Surface Plasmon Resonance Enhanced Photocatalysis: an Experimental and Theoretical Mechanistic Investigation. RSC Adv 8:28753–28762. https://doi.org/10.1039/C8RA03919D

    Article  Google Scholar 

  16. Mansuripur M et al (2009) Plasmonic Optical Data Storage. Opt Express 17:14001–14014. https://doi.org/10.1364/OE.17.014001

    Article  CAS  PubMed  Google Scholar 

  17. Singh D, Gupta SK, Lukačević I, Mužević M, Sonvane Y, Ahuja R (2019) Effect of Electric Field on Optoelectronic Properties of Indiene Monolayer for Photoelectric Nanodevices. Sci Rep 9:17300. https://doi.org/10.1038/s41598-019-53631-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brongersma ML, Kik PG (2007) Surface Plasmon Nanophotonics. Springer Series in Optical Sciences, Springer, Dordrecht 131. https://doi.org/10.1007/978-1-4020-4333-8_1

  19. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J Phys Chem B 110:7238-7248. https://doi.org/10.1021/jp057170o

  20. Verbruggen SW, Keulemans M, Martens JA, Lenaerts S (2013) Predicting the Surface Plasmon Resonance Wavelength of Gold-Silver Alloy Nanoparticles. J Phys Chem C 117:19142–19145. https://doi.org/10.1021/jp4070856

    Article  CAS  Google Scholar 

  21. Jeon HB, Tsalu PV, Ha JW (2019) Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices. Sci Rep 9:13635. https://doi.org/10.1038/s41598-019-50032-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarid D, Challener W (2010) Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications; Cambridge university press 201-249. https://doi.org/10.1017/CBO9781139194846

  23. Piralaee M, Asgari A, Siahpoush V (2018) Plasmonic Properties of Spheroid Silicon-Silver Nanoshells in Prolate and Oblate Forms. Optik 172:1064–1068. https://doi.org/10.1016/j.ijleo.2018.07.131

    Article  CAS  Google Scholar 

  24. Avsar D, Erturk H, Menguc MP (2019) Plasmonic Responses of Metallic/Dielectric Core-Shell Nanoparticles on a Dielectric Substrate. Mater Res Express 6:065006. https://doi.org/10.1088/2053-1591/ab07fd

  25. Zhou X, Li H, Xie S, Fu S, Xu H, Liu Z (2011) Effects of Dielectric Core and Embedding Medium on Plasmonic Coupling of Gold Nanoshell Arrays. Solid State Commun 151:1049–1052. https://doi.org/10.1016/j.ssc.2011.04.014

    Article  CAS  Google Scholar 

  26. Yu P, Yao Y, Wu J, Niu X, Rogach AL, Wang Z (2017) Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells. Sci Rep 7:7696. https://doi.org/10.1038/s41598-017-08077-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hinamoto T, Sugimoto H, Fujii M (2018) Metal-Core/Dielectric-Shell/Metal-Cap Composite Nanoparticle for Upconversion Enhancement. J Phys Chem C 122(30):17465–17472. https://doi.org/10.1021/acs.jpcc.8b05211

    Article  CAS  Google Scholar 

  28. Bohren CF, Huffman DR (1998) Absorption and Scattering of Light by Small Particles. WILEY-VCH. https://doi.org/10.1002/9783527618156

    Article  Google Scholar 

  29. Xu F, Ren K, Gouesbet G, Gréhan G, Cai X (2007) Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid. J Opt Soc Am A 24:119–131

    Article  CAS  Google Scholar 

  30. Aden AL, Kerker M (1951) Scattering of Electromagnetic Waves from Two Concentric Spheres. J Appl Phys 22:1242–1246. https://doi.org/10.1063/1.1699834

    Article  Google Scholar 

  31. Rafiee M, Chandra S, Ahmed H, McCormack SJ (2021) Optimized 3D Finite-Difference-Time-Domain Algorithm to Model the Plasmonic Properties of Metal Nanoparticles with Near-Unity Accuracy. Chemosensors 9(5):114. https://doi.org/10.3390/chemosensors9050114

    Article  CAS  Google Scholar 

  32. Roopak S et al (2016) Numerical Simulation of Extinction Spectra of Plasmonically Coupled Nanospheres Using Discrete Dipole Approximation: Influence of Compositional Asymmetry. Plasmonics 11:1603–1612. https://doi.org/10.1007/s11468-016-0216-3

    Article  CAS  Google Scholar 

  33. William RV, Das GM, Dantham VR, Laha R (2019) Enhancement of Single Molecule Raman Scattering using Sprouted Potato Shaped Bimetallic Nanoparticles. Sci Rep 9:10771. https://doi.org/10.1038/s41598-019-47179-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marcheselli J et al (2020) Simulating Plasmon Resonances of Gold Nanoparticles with Bipyramidal Shapes by Boundary Element Methods. J Chem Theory Comput 16(6):3807–3815. https://doi.org/10.1021/acs.jctc.0c00269

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ma J, Liu Y, Gao PF, Zou HY, Huang CZ (2016) Precision Improvement in Dark-Field Microscopy Imaging by Using Gold Nanoparticles as an Internal Reference: a Combined Theoretical and Experimental Study. Nanoscale 8:8729–8736

    Article  CAS  PubMed  Google Scholar 

  36. Hu M et al (2008) Dark-Field Microscopy Studies of Single Metal Nanoparticles: Understanding the Factors that Influence the Linewidth of the Localized Surface Plasmon Resonance. J Mater Chem 18:1949–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagner T, Lipinski HG, Wiemann M (2014) Dark field Nanoparticle Tracking Analysis for Size Characterization of Plasmonic and Non-plasmonic Particles. J Nanopart Res 16:2419. https://doi.org/10.1007/s11051-014-2419-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li T, Wu X, Liu F, Li N (2017) Analytical Methods Based on the Light-Scattering of Plasmonic Nanoparticles at the Single Particle Level with Dark-Field Microscopy Imaging. Analyst 142:248–256. https://doi.org/10.1039/C6AN02384C

    Article  CAS  PubMed  Google Scholar 

  39. Kuladeep R, Jyothi L, Alee KS, Deepak KLN, Rao DN (2012) Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency. Opt Mater Express 2(2):161–172. https://doi.org/10.1364/OME.2.000161

    Article  CAS  Google Scholar 

  40. Sanchez-Ram JF et al (2008) Synthesis and Optical Properties of Au-Ag Alloy Nanoclusters with Controlled Composition. J Nanomater 1-9. https://doi.org/10.1155/2008/620412.

  41. Peña-Rodríguez O, Caro M, Rivera A, Olivares J, Perlado JM, Caro A (2014) Optical Properties of Au-Ag Alloys: An Ellipsometric Study. Opt Mater Express 4(2):403–410. https://doi.org/10.1364/OME.4.000403

    Article  CAS  Google Scholar 

  42. Kumari MM, Jacob J, Philip D (2015) Green Synthesis and Application of Au-Ag bimetallic Nanoparticles. Spectrochim Acta Part A: Mol Biomol Spectros 137:185–192. https://doi.org/10.1016/j.saa.2014.08.079

    Article  CAS  Google Scholar 

  43. Pedireddy S et al (2013) Synthesis of Spiky Ag–Au Octahedral Nanoparticles and their Tunable Optical Properties. J Phys Chem C 117(32):16640–16649. https://doi.org/10.1021/jp4063077

    Article  CAS  Google Scholar 

  44. Fan M, Lai F-J, Chou H-L, Lu W-T, Hwang B-J, Brolo AG (2013) Surface-Enhanced Raman Scattering (SERS) From Au: Ag Bimetallic Nanoparticles: the Effect of the Molecular Probe. Chem Sci 4:509–515. https://doi.org/10.1039/C2SC21191B

    Article  CAS  Google Scholar 

  45. Mahata T, Mandal A, Dantham VR (2021) Role of Composition and Size-Dependent Damping due to Electron-Surface Scattering on Plasmonic Properties of gold-silver Alloy Nanoparticles: A theoretical study. J Quant Spectrosc Radiat Transfer 276:107940. https://doi.org/10.1016/j.jqsrt.2021.107940

  46. Tiwari P, Das GM, Dantham VR (2020) Optical Properties of Au-Ag Bimetallic Nanoparticles of Different Shapes for Making Efficient Bimetallic-Photonic Whispering Gallery Mode Hybrid Microresonators. Plasmonics 15:1251–1260. https://doi.org/10.1007/s11468-020-01141-7

  47. Rioux D et al (2013) An Analytic Model for the Dielectric Function of Au, Ag, and their Alloys. Adv Opt Mater 2(2):176–182. https://doi.org/10.1002/adom.201300457

    Article  CAS  Google Scholar 

  48. Harrington RF (2001) Time-Harmonic Electromagnetic Fields. Wiley-IEEE Press

  49. Chen Q et al (2017) Optical properties of truncated Au nanocages with different size and shape. AIP Adv 7(9):065115. https://doi.org/10.1063/1.4990409

  50. Das GM, William RV, Dantham VR, Laha R (2021) Study on SERS activity of Au-Ag bimetallic nanostructures synthesized using different reducing agents. Phys E: Low-dimension Syst Nanostruct 129:114656. https://doi.org/10.1016/j.physe.2021.114656

Download references

Funding

V.R.D. thanks Science and Engineering Research Board (SERB), Government of India, under Grant CRG/2021/002951. G.M.D thanks ENSEMBLE3 Project (MAB/2020/14) which is carried out within the International Research Agendas Programme (IRAP) of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund and the Teaming Horizon 2020 program (GA. No. 857543) of the European Commission.

Author information

Authors and Affiliations

Authors

Contributions

Sibanisankar Sahoo synthesized and characterized the nanoparticles, and performed the experiment. Gour Mohan Das performed the numerical simulations. Sibanisankar Sahoo, Gour Mohan Das, and Venkata Ramanaiah Dantham wrote the manuscript.

Corresponding author

Correspondence to Venkata Ramanaiah Dantham.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Das, G.M. & Dantham, V.R. Experimental and Numerical Investigation on Plasmonic Properties of Single-Sprouted Potato-Shaped Au-Ag Bimetallic Nanoparticles. Plasmonics 18, 2103–2115 (2023). https://doi.org/10.1007/s11468-023-01931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01931-9

Keywords

Navigation