Skip to main content
Log in

Bioinspired Nanochannel-assisted Broadband Absorber for Solar Energy Harvesting

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Solar absorber plates have limited applications as solar vapor interfaces because of their impermeability. Inspired by duckweed, we propose a four-layer solar absorber with nanochannels that allow water to pass through and numerically study its effectiveness. The bioinspired absorber achieves a solar energy harvesting efficiency as high as 99.4%. The ultra-high absorption of the bioinspired absorber in the solar spectrum is achieved by the coexistence of electric and magnetic polaritons, which are further enhanced by the bioinspired nanochannels. Most significantly, the nanochannels in the absorbers owning functions similar to those of duckweed to facilitate water transport from the lower region to the heated upper surface. The present study demonstrates an interesting strategy for fabricating solar absorbers with simple nanostructures and bioinspired nanochannels for water transportation, demonstrating potential applications in efficient solar steam generation for wastewater treatment and desalination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50

    Article  CAS  PubMed  Google Scholar 

  2. Omer AM (2008) Focus on low carbon technologies: the positive solution. Renew Sustain Energy Rev 12:2331–2357

    Article  CAS  Google Scholar 

  3. Sovacool BK, Griffiths S (2020) Culture and low-carbon energy transitions. Nat Sustain 3:685–693

    Article  Google Scholar 

  4. Sadhwani JJ, de Ilurdoz MS (2019) Primary energy consumption in desalination: the case of Gran Canaria. Desalination 452:219–229

    Article  Google Scholar 

  5. Green PA, Vörösmarty CJ, Harrison I, Farrell T, Sáenz L, Fekete BM (2015) Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions. Glob Environ Change 34:108–118

    Article  Google Scholar 

  6. Drioli E, Ali A, Macedonio F (2015) Membrane distillation: recent developments and perspectives. Desalination 356:56–84

    Article  CAS  Google Scholar 

  7. Al-Amshawee S, Yunus MYBM, Azoddein AAM, Hassell DG, Dakhil IH, Hasan HA (2020) Electrodialysis desalination for water and wastewater: a review. Chem Eng J 380:122231

    Article  CAS  Google Scholar 

  8. Qasim M, Badrelzaman M, Darwish NN, Darwish NA, Hilal N (2019) Reverse osmosis desalination: a state-of-the-art review. Desalination 459:59–104

    Article  CAS  Google Scholar 

  9. Wang Z, Cheng P (2019) Enhancements of absorption and photothermal conversion of solar energy enabled by surface plasmon resonances in nanoparticles and metamaterials. Int J Heat Mass Transfer 140:453–482

    Article  CAS  Google Scholar 

  10. Wu X, Chen GY, Owens G, Chu D, Xu H (2019) Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy. Mater Today Energy 12:277–296

    Article  Google Scholar 

  11. Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC (2016) Photovoltaic materials: Present efficiencies and future challenges. Science 352:aad4424

    Article  PubMed  Google Scholar 

  12. Guo Q, Zhou C, Ma Z, Yang X (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31:1901997

    Article  CAS  Google Scholar 

  13. Hussain S, Ulhassan Z, Brestic M, Zivcak M, Zhou W, Allakhverdiev SI, Yang X, Safdar ME, Yang W, Liu W (2021) Photosynthesis research under climate change. Photosynth Res 150:5–19

    Article  CAS  PubMed  Google Scholar 

  14. Wang Z, Liu Z, Duan G, Fang L, Duan H (2022) Ultrahigh broadband absorption in metamaterials with electric and magnetic polaritons enabled by multiple materials. Int J Heat Mass Transfer 185:122355

    Article  CAS  Google Scholar 

  15. Wang Z, Yang P, Qi G, Zhang ZM, Cheng P (2020) An experimental study of a nearly perfect absorber made from a natural hyperbolic material for harvesting solar energy. J Appl Phys 127:233102

    Article  CAS  Google Scholar 

  16. Wang Z, Zhang ZM, Quan X, Cheng P (2018) A perfect absorber design using a natural hyperbolic material for harvesting solar energy. Sol Energy 159:329–336

    Article  CAS  Google Scholar 

  17. Liang Q, Yin Q, Chen L, Wang Z, Chen X (2020) Perfect spectrally selective solar absorber with dielectric filled fishnet tungsten grating for solar energy harvesting. Sol Energy Mater Sol Cells 215:110664

    Article  CAS  Google Scholar 

  18. Liu Z, Duan G, Duan H, Wang Z (2022) Nearly perfect absorption of solar energy by coherent of electric and magnetic polaritons. Sol Energy Mater Sol Cells 240:111688

    Article  CAS  Google Scholar 

  19. Wang Z, Quan X, Yao W, Wang L, Cheng P (2016) Plasma resonance effects on bubble nucleation in flow boiling of a nanofluid irradiated by a pulsed laser beam. Int Commun Heat Mass Transfer 72:90–94

    Article  CAS  Google Scholar 

  20. Wang Z, Zhang ZM, Cheng P (2018) Natural anisotropic nanoparticles with a broad absorption spectrum for solar energy harvesting. Int Commun Heat Mass Transfer 96:109–113

    Article  CAS  Google Scholar 

  21. Wang Z, Zhang ZM, Quan X, Cheng P (2018) A numerical study on effects of surrounding medium, material, and geometry of nanoparticles on solar absorption efficiencies. Int J Heat Mass Transfer 116:825–832

    Article  CAS  Google Scholar 

  22. Wang Z, Quan X, Zhang Z, Cheng P (2018) Optical absorption of carbon-gold core-shell nanoparticles. J Quant Spectrosc Radiat Transfer 205:291–298

    Article  CAS  Google Scholar 

  23. Wang S, Wu PC, Su V-C, Lai Y-C, Chen M-K, Kuo HY, Chen BH, Chen YH, Huang T-T, Wang J-H (2018) A broadband achromatic metalens in the visible. Nat Nanotechnol 13:227–232

    Article  CAS  PubMed  Google Scholar 

  24. Qian C, Chen H (2021) A perspective on the next generation of invisibility cloaks—Intelligent cloaks. Appl Phys Lett 118:180501

    Article  CAS  Google Scholar 

  25. Zhou H, Yang C, Hu D, Li D, Hui X, Zhang F, Chen M, Mu X (2019) Terahertz biosensing based on bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication. Appl Phys Lett 115:143507

    Article  Google Scholar 

  26. Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S (2014) Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515:540–544

    Article  CAS  PubMed  Google Scholar 

  27. Liang Y, Koshelev K, Zhang F, Lin H, Lin S, Wu J, Jia B, Kivshar Y (2020) Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett 20:6351–6356

    Article  CAS  PubMed  Google Scholar 

  28. Lochbaum A, Dorodnyy A, Koch U, Koepfli SM, Volk S, Fedoryshyn Y, Wood V, Leuthold J (2020) Compact mid-infrared gas sensing enabled by an all-metamaterial design. Nano Lett 20:4169–4176

    Article  CAS  PubMed  Google Scholar 

  29. Liu N, Kaiser S, Giessen H (2008) Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv Mater 20:4521–4525

    Article  CAS  Google Scholar 

  30. Zentgraf T, Meyrath TP, Seidel A, Kaiser S, Giessen H, Rockstuhl C, Lederer F (2007) Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys Rev B 76:033407

    Article  Google Scholar 

  31. Babicheva VE, Evlyukhin AB (2018) Metasurfaces with electric quadrupole and magnetic dipole resonant coupling. ACS Photonics 5:2022–2033

    Article  CAS  Google Scholar 

  32. Fedotov VA, Rogacheva AV, Savinov V, Tsai DP, Zheludev NI (2013) Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci Rep 3:2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang S, Wang S, Li Q, Zhao X, Zhu J (2018) Dual toroidal dipole resonance metamaterials under a terahertz domain. Materials 11:2036

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luo J, Chu H, Peng R, Wang M, Li J, Lai Y (2021) Ultra-broadband reflectionless Brewster absorber protected by reciprocity. Light Sci Appl 10:1–10

    Article  Google Scholar 

  35. Wang Z, Duan G, Duan H (2021) Optimization of the perfect absorber for solar energy harvesting based on the cone-like nanostructures. AIMS Energy 9:714–726

    Article  CAS  Google Scholar 

  36. Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J (2016) Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv 2:e1501227

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Wei Y, Liu Z, Duan G, Yang D, Cheng P (2022) Extremely low infrared emissivity perfect solar absorber. Photonics 9:574

    Article  CAS  Google Scholar 

  38. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:1–7

    Article  Google Scholar 

  39. Guo Z, Liu X, Li C, Li J, Cai H, Fu M, He D, Wang Y (2021) Near-perfect broadband metamaterial absorbers of truncated nanocones using colloidal lithography. Opt Mater 119:111352

    Article  CAS  Google Scholar 

  40. Liu D, Li Q (2017) Sub-nanometer planar solar absorber. Nano Energy 34:172–180

    Article  CAS  Google Scholar 

  41. Chen H, Chan CT, Sheng P (2010) Transformation optics and metamaterials. Nat Mater 9:387–396

    Article  CAS  PubMed  Google Scholar 

  42. Wang Z, Li Y, Gong S, Li W, Duan H, Cheng P, Chen Y, Dong Z (2022) Three-dimensional open water microchannel transpiration mimetics. ACS Appl Mater Interfaces 14:30435–30442

    Article  CAS  PubMed  Google Scholar 

  43. Wang Z, Zhan Z, Chen L, Duan G, Cheng P, Kong H, Chen Y, Duan H (2022) 3D-Printed bionic solar evaporator. Sol RRL 6:2101063

    Article  CAS  Google Scholar 

  44. Li P, Chen S, Dai H, Yang Z, Chen Z, Wang Y, Chen Y, Peng W, Shan W, Duan H (2021) Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale 13:1529–1565

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, Shu Z, Feng Z, Kong La, Liu Y, Duan H (2020) Reliable patterning, transfer printing and post-assembly of multiscale adhesion‐free metallic structures for nanogap device applications. Adv Funct Mater 30:2002549

    Article  CAS  Google Scholar 

  46. Lide DR (2004) CRC handbook of chemistry and physics. CRC press

  47. Querry MR (1987) Optical constants of minerals and other materials from the millimeter to the ultraviolet. Chemical Research, Development & Engineering Center, US Army Armament Munitions Chemical Command

  48. Zhang X, Qiu J, Li X, Zhao J, Liu L (2020) Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl Opt 59:2337–2344

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Qiu J, Zhao J, Li X, Liu L (2020) Complex refractive indices measurements of polymers in infrared bands. J Quant Spectrosc Ra 252:107063

    Article  CAS  Google Scholar 

  50. Esslinger M, Vogelgesang R, Talebi N, Khunsin W, Gehring P, de Zuani S, Gompf B, Kern K (2014) Tetradymites as natural hyperbolic materials for the Near-Infrared to visible. ACS Photonics 1:1285–1289

    Article  CAS  Google Scholar 

  51. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Article  PubMed  Google Scholar 

Download references

Funding

Supported by National Natural Science Foundation of China through Grant No. 52006056 and the Experiments for Space Exploration Program and the Qian Xuesen Laboratory, China Academy of Space Technology (Grant No. TKTSPY-2020-01-04).

Author information

Authors and Affiliations

Authors

Contributions

Wang provided funds and ideas and Wei wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Zhaolong Wang or Dongsheng Yang.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wei, Y. & Yang, D. Bioinspired Nanochannel-assisted Broadband Absorber for Solar Energy Harvesting. Plasmonics 18, 2177–2186 (2023). https://doi.org/10.1007/s11468-023-01897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01897-8

Keywords

Navigation