Skip to main content
Log in

Titanium Dioxide-2D Nanomaterial Based on the Surface Plasmon Resonance (SPR) Biosensor Performance Signature for Infected Red Cells Detection

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper presents a performance signature of a surface plasmon resonance (SPR) sensor for infected red blood cells (RBCs) detection using titanium dioxide (\({\mathrm{TiO}}_{2}\))-2D nanomaterial-based structure. There is a substantial deviation between RBCs with and without Plasmodium falciparum infection, which can be represented in refractive indices showing the disease’s diagnosis. For the detection process, the proposed structure is made up by Kretschmann setup with silver (Ag), \({\mathrm{TiO}}_{2}\), and 2D nanomaterials. Here, Ag excites the surface plasmons on prism surface as well as provide sharp resonance dip that lead to better resolution and quality. Likewise, \({\mathrm{TiO}}_{2}\) has admirable electronic and optical properties, including high photocatalytic activity and chemical stability, and is placed between Ag and 2D nanomaterial s for increased sensitivity. Different nanomaterials, MXene, graphene, black phosphorus, and molybdenum disulfide (\({\mathrm{MoS}}_{2}\)), are used to improve the sensor’s efficiency. Sensing parameters are measured by exploiting the transfer matrix method. Initially, an impact of \({\mathrm{TiO}}_{2}\) in the SPR sensor is presented, concluding that 18% of sensitivity is improved after adding \({\mathrm{TiO}}_{2}\) to the conventional structure. Moreover, utilization of 2D nanomaterial in the proposed sensor is observed, resulting that the respected 2D materials are improved the sensitivity by 11%, 4%, 10%, and 34% compared to the \({\mathrm{TiO}}_{2}\)-based sensor. The maximum achieved parameters are a sensitivity of 475.71°/RIU, a quality factor of 236.67 \({\mathrm{RIU}}^{-1}\), and detection accuracy of 5.95, which are improved extremely compared to existing works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Nureye D, Assefa S (2020) Old and recent advances in life cycle, pathogenesis, diagnosis, prevention, and treatment of malaria including perspectives in Ethiopia. Sci World J 1–17. https://doi.org/10.1155/2020/1295381

  2. Molina-Franky J, Cuy-Chaparro L, Camargo A, Reyes C, Gómez M, Salamanca D, Patarroyo M, Patarroyo M (2020) Plasmodium falciparum pre-erythrocytic stage vaccine development. Malar J 19(1);1–18. https://doi.org/10.1186/s12936-020-3141-z

  3. Singh TI, Singh P, Karki B (2023) Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure. Plasmonics 1–8. https://doi.org/10.1007/s11468-023-01840-x

  4. Karki B, Uniyal A, Srivastava G, Pal A (2023) Black phosphorous and Cytop nanofilm-based long-range SPR sensor with enhanced quality factor. J Sens. https://doi.org/10.1155/2023/2102915

    Article  Google Scholar 

  5. Karki B, Ansari G, Uniyal A, Srivastava V (2023) PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor. J Comput Electron 22(1):106–115. https://doi.org/10.1007/s10825-022-01975-w

    Article  CAS  Google Scholar 

  6. Karki B, Uniyal A, Pal A, Srivastava V (2022) Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. Int J Opt. https://doi.org/10.1155/2022/1476254

    Article  Google Scholar 

  7. Karki B, Jha A, Pal A, Srivastava V (2022) Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt Quant Ele 54(9):595. https://doi.org/10.1007/s11082-022-04004-z

    Article  CAS  Google Scholar 

  8. Karki B, Vasudevan B, Uniyal A, Pal A, Srivastava V (2022) Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik 270:169947. https://doi.org/10.1016/j.ijleo.2022.169947

    Article  CAS  Google Scholar 

  9. Karki B, Ramya KC, Sandhya Devi RS, Srivastava V, Pal A (2022) Titanium dioxide, black phosphorus and bimetallic layer-based surface plasmon biosensor for formalin detection: numerical analysis. Opt Quant Ele 54(7):451. https://doi.org/10.1007/s11082-022-03875-6

    Article  CAS  Google Scholar 

  10. Liu PY, Chin LK, Ser W, Chen H, Hsieh CM, Lee CH, Sung KB, Ayi T, Yap P, Liedberg B, Wang K, Bourouina T, Leprince-Wang Y (2016) Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16(4):634–644. https://doi.org/10.1039/c5lc01445j

    Article  CAS  PubMed  Google Scholar 

  11. Akpa Marcel A, Konan K, Tokou Z, Kossonou Y, Dion S, Kaduki K, Zoueu J (2019) Malaria-infected red blood cell analysis through optical and biochemical parameters using the transport of intensity equation and the microscope’s optical properties. Sensors 19:3045. https://doi.org/10.3390/2Fs19143045

    Article  Google Scholar 

  12. Bendib B, Bendib C (2018) Photonic crystals for malaria detection. J Biosens Bioelectron. https://doi.org/10.4172/2155-6210.1000257

    Article  Google Scholar 

  13. Ragavan KV, Kumar S, Swaraj S, Neethirajan S (2018) Advances in biosensors and optical assays for diagnosis and detection of malaria. Biosens Bioelectron 105:188–210. https://doi.org/10.1016/j.bios.2018.01.037

    Article  CAS  PubMed  Google Scholar 

  14. Krampa F, Aniweh Y, Kanyong P, Awandare G (2020) Recent advances in the development of biosensors for malaria diagnosis. Sensors 20:799. https://doi.org/10.3390/2Fs20030799

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bilal M, Saleem M, Amanat S, Shakoor H, Rashid R, Mahmood A, Ahmed A (2015) Optical diagnosis of malaria infection in human plasma using Raman spectroscopy. J Biomed Opt 20(1):17002S. https://doi.org/10.1117/1.jbo.20.1.017002

    Article  Google Scholar 

  16. Yan Q, Peng B, Su G, Cohan BE, Major TC, Meyerhoff ME (2011) Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration. Anal Chem 83:8341–8346. https://doi.org/10.1021/ac201700c

    Article  CAS  PubMed  Google Scholar 

  17. Dai X, Liang Y, Zhao Y, Gan S, Jia Y, Xiang Y (2019) Sensitivity enhancement of a surface plasmon resonance with tin selenide (SnSe) allotropes. Sensors 19(1):173. https://doi.org/10.3390/s19010173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bochenkov VE, Frederiksen M, Sutherland DS (2013) Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films. Opt Exp 21:14763. https://doi.org/10.1364/oe.21.014763

    Article  CAS  Google Scholar 

  19. Wei PC, Bhattacharya S, He J, Neeleshwar S, Podila R, Chen YY, Rao AM (2016) The intrinsic thermal conductivity of SnSe. Nature 539(7627):1–3. https://doi.org/10.1038/nature19832

    Article  CAS  Google Scholar 

  20. Zhao S et al (2015) Controlled synthesis of single-crystal SnSe nanoplates. Nano Res 8:288–295. https://doi.org/10.1007/s12274-014-0676-8

    Article  CAS  Google Scholar 

  21. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54:3–15. https://doi.org/10.1016/S0925-4005(98)00321-9

    Article  CAS  Google Scholar 

  22. Kumar R et al (2020) Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct. 145:106591. https://doi.org/10.1016/j.spmi.2020.106591

    Article  CAS  Google Scholar 

  23. Yotong S et al (2022) Temperature sensor based on surface plasmon resonance with TiO2-Au-TiO2 triple structure. Materials 15(21):7766. https://doi.org/10.3390/ma15217766

    Article  CAS  Google Scholar 

  24. Gogotsi Y, Anasori B (2019) The rise of MXenes ACS nano 13(8):8491–8494. https://doi.org/10.1021/acsnano.9b06394

    Article  CAS  PubMed  Google Scholar 

  25. Shinde PV, Singh MK (2019) Synthesis, characterization, and properties of graphene analogs of 2D material. Fundam Sens Appl 2D Mater 91–143. https://doi.org/10.1016/B978-0-08-102577-2.00004-X

  26. Chen P, Li N, Chen X, Ong WJ, Zhao X (2017) The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater 5(1):014002. https://doi.org/10.1088/2053-1583/aa8d37

    Article  CAS  Google Scholar 

  27. Liao G et al (2019) Ag-based nanocomposites: synthesis and applications in catalysis”. Nanoscale 11(15):7062–7096. https://doi.org/10.1039/c9nr01408j

    Article  CAS  PubMed  Google Scholar 

  28. Vijayalakshmi R, Rajendran V (2012) Synthesis and characterization of nano-TiO2 via different methods. Arch Appl Sci Res 4(2):1183–1190

    CAS  Google Scholar 

  29. Maurya JB, Prajapati YK (2020) Experimental demonstration of DNA hybridization using graphene based plasmonic sensor chip. J Lightwave Techn 38(18):5191–5198. https://doi.org/10.1109/JLT.2020.2998138

    Article  CAS  Google Scholar 

  30. Nyamekye CKA et al (2019) Experimental analysis of waveguide-coupled surface-plasmon-polariton cone properties. Anal Chim Acta 1048:123–131. https://doi.org/10.1016/j.aca.2018.09.057

    Article  CAS  PubMed  Google Scholar 

  31. Vasimalla Y, Pradhan HS, Pandya RJ (2021) Sensitivity enhancement of the SPR biosensor for Pseudomonas bacterial detection employing a silicon-barium titanate structure. Appl Opt 60:5588–5598. https://doi.org/10.1364/AO.427499

    Article  PubMed  Google Scholar 

  32. Jabin M, Rana M, Al-Zahrani FA, Paul BK, Ahmed K, Bui FM (2022) Novel detection of diesel adulteration using silver-coated surface plasmon resonance sensor. Plasmonics 17:467–478. https://doi.org/10.1007/s11468-021-01540-4

    Article  CAS  Google Scholar 

  33. Singh Y, Raghuwanshi SK (2021) Titanium dioxide (TiO2) coated optical fiber-based SPR sensor in near-infrared region with bimetallic structure for enhanced sensitivity. Optic 226:165842. https://doi.org/10.1016/j.ijleo.2020.165842

    Article  CAS  Google Scholar 

  34. Pal S et al (2020) Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides and MXene in SPR sensor. Appl Phys A 126(10):809. https://doi.org/10.1007/s00339-020-03998-1

    Article  CAS  Google Scholar 

  35. Szunerits S et al (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405:1435–1443. https://doi.org/10.1007/s00216-012-6624-0

    Article  CAS  PubMed  Google Scholar 

  36. Vasimalla Y, Pradhan HS, Pandya RJ (2020) SPR performance enhancement for DNA hybridization employing black phosphorus, silver, and silicon. Appl Opt 59(24):7299–7307. https://doi.org/10.1364/ao.397452

    Article  CAS  PubMed  Google Scholar 

  37. Cai H et al (2022) Performance enhancement of SPR biosensor using graphene–MoS2 hybrid structure. Nanomaterials 12(13):2219. https://doi.org/10.3390/nano12132219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Daher MG (2023) Highly sensitive detection of infected red blood cells (IRBCs) with plasmodium falciparum using surface plasmon resonance (SPR) nanostructure. Opt Quant Ele 55(3):199. https://doi.org/10.1007/s11082-022-04466-1

    Article  CAS  Google Scholar 

  39. Jia Y, Li Z, Wang H, Saeed M, Cai H (2020) Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide. Sensors 20(1):131. https://doi.org/10.3390/s20010131

    Article  CAS  Google Scholar 

  40. Pal S, Prajapati YK, Saini JP (2020) Infuence of grapheme’chemical potential on SPR biosensor using ZnO for DNA hybridization. Opt Rev 27:57–64. https://doi.org/10.1007/s10043-019-00564-w

    Article  CAS  Google Scholar 

  41. Taya SA, Al-Ashi NE, Ramahi OM, Colak I, Amiri IS (2021) Surface plasmon resonance-based optical sensor using a thin layer of plasma. J Opt Soc Am B 38:2362–2337. https://doi.org/10.1364/JOSAB.420129

    Article  Google Scholar 

  42. Mudgal N, Saharia A, Agarwal A, Ali J, Yupapin P, Singh G (2020) Modeling of highly sensitive surface plasmon resonance (SPR) sensor for urine glucose detection. Opt Quantum Electron 52(6):1–14. https://doi.org/10.1007/s11082-020-02427-0

    Article  CAS  Google Scholar 

  43. Pal A, Jha A (2021) A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets. Optik 231:166378. https://doi.org/10.1016/j.ijleo.2021.166378

    Article  CAS  Google Scholar 

  44. Uniyal A, Chauhan B, Pal A (2022) Bi-metallic films of gold, MXene, and graphene nano film-based surface plasmon resonance sensor for malaria detection: a numerical analysis. https://doi.org/10.21203/rs.3.rs-1766754/v1

  45. Kumar R, Pal S, Prajapati YK, Kumar S (2022) Saini J P (2022) Sensitivity improvement of a MXene- immobilized SPR sensor with Ga-doped-ZnO for biomolecules detection. IEEE Sens J 22(7):6536–6543. https://doi.org/10.1109/JSEN.2022.3154099

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Yesudasu Vasimalla, Himansu Shekhar Pradhan; data curation, formal analysis, investigation, Rahul Jashvantbhai Pandya, Kayam Sai Kumar; methodology, Twana Mohammed Kak Anwer, Md. Amzad Hossain, Ahmed Nabih Zaki Rashed; resources, software, Md. Amzad Hossain, Ahmed Nabih Zaki Rashed; supervision, validation, Yesudasu Vasimalla, Himansu Shekhar Pradhan; visualization, writing—original draft, Rahul Jashvantbhai Pandya, Yesudasu Vasimalla, Ahmed Nabih Zaki Rashed; writing—review editing.

Corresponding authors

Correspondence to Ahmed Nabih Zaki Rashed or Md. Amzad Hossain.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasimalla, Y., Pradhan, H.S., Pandya, R.J. et al. Titanium Dioxide-2D Nanomaterial Based on the Surface Plasmon Resonance (SPR) Biosensor Performance Signature for Infected Red Cells Detection. Plasmonics 18, 1725–1734 (2023). https://doi.org/10.1007/s11468-023-01885-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01885-y

Keywords

Navigation