Skip to main content
Log in

Ultra-deep Subwavelength Confinement Palladium-Based Elliptical Cylinder Plasmonic Waveguide in the Near-Infrared Range

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Ultra-deep subwavelength confinement and long propagation length are of large importance for compact photonic integration. Nevertheless, the subwavelength confinement ability of near-infrared (NIR) devices is continually appeared via the intrinsic Ohmic loss. In this study, a palladium-based elliptical cylinder plasmonic waveguide (PECPW) has proposed to achieve excellent propagating efficiency in the NIR ranges. The PECPW structure is composite of an elliptical cylinder palladium (Pd) nanowire and two dielectric layers as clothing. Here, the characteristics of the proposed waveguide on the wavelength of incident field and thickness of the low-index dielectric and high-index layers are investigated by using the finite element method. Our finding has shown that the proposed waveguide has a normalized mode area of \(\sim {10}^{-4}\), figure of merit over 8000, and a propagation length over \(270\;\mathrm\mu\mathrm m\) by tuning the semi-major axis Pd nanowire, wavelength of incident light, and the thickness of the dielectric layers. Hence, proposed waveguide illustrates lower loss and stronger surface plasmon polariton mode confinement than the similar plasmonic waveguides. Owing to these results, the designed structure could be used to the nanophotonic integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The numerical analysis is done with Comsol Multiphysics 5.6 and also data will be available on reasonable request.

References

  1. Achanta V-G (2020) Surface waves at metal-dielectric interfaces: material science perspective. Rev Phys 5:100041

    Article  Google Scholar 

  2. Li S, Zuo G, Wu N, Yang Z, Zhao B, Xia L, Li W (2021) Hybrid plasmonic nanofocusing waveguide for on-chip SERS tweezer. Opt Laser Technol 143:107259

    Article  CAS  Google Scholar 

  3. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photon 4:83–91

    Article  CAS  Google Scholar 

  4. Jafari MR, Omidi M (2019) The effect of quantum ring size on shifting the absorption coefficient from infrared region to ultraviolet region. Appl Phys A 125(7):1–5

    Article  Google Scholar 

  5. Jafari MR, Ebrahimi F, Nooshirvani M (2010) Subwavelength electromagnetic energy transport by stack of metallic nanorings. J Appl Phys 108(5):054313

    Article  Google Scholar 

  6. Pierre B (2009) Long-range surface plasmon polaritons. Adv Opt Photon 1:484–588

    Article  Google Scholar 

  7. Choo H, Kim M, Staffaroni M, Seok TJ, Bokor J, Cabrini S, Schuck PJ, Wu MC, Yablonovitch E (2012) Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photon 6:838–844

    Article  CAS  Google Scholar 

  8. Yang L, Xie X, Yang J, Xue M, Wu S, Xiao S, Song F, Dang J, Sun S, Zuo Z et al (2022) Strong light–matter interactions between gap plasmons and two-dimensional excitons under ambient conditions in a deterministic way. Nano Lett 22:2177–2186

    Article  CAS  PubMed  Google Scholar 

  9. Lin YE, Hsu WH, Huang CC (2021) Highly confined dielectric guiding mode in nanoridges embedded in a conventional slot waveguide. Opt Express 29:16284–16298

    Article  CAS  PubMed  Google Scholar 

  10. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404

    Article  PubMed  Google Scholar 

  11. Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H (2018) Plasmon waveguiding in nanowires. Chem Rev 118:2882–2926

    Article  CAS  PubMed  Google Scholar 

  12. Liaw JW, Mao SY, Luo JY, Ku YC, Kuo MK (2021) Surface plasmon polaritons of higher-order mode and standing waves in metallic nanowires. Opt Express 29:18876–18888

    Article  CAS  PubMed  Google Scholar 

  13. Teng D, Cao Q, Li S, Gao H (2014) Tapered dual elliptical plasmon waveguides as highly efficient terahertz connectors between approximate plate waveguides and two-wire waveguides. J Opt Soc Am A 31:268–273

    Article  Google Scholar 

  14. Liu D, Zhao S, You B, Jhuo S, Lu J, Chou S, Hattori T (2021) Tuning transmission properties of 3D printed metal rod arrays by breaking the structural symmetry. Opt Express 29:538–551

    Article  CAS  PubMed  Google Scholar 

  15. Jafari MR, Ebrahimi F (2010) Plasmonic thermal conductance of stack of metallic nanorings. J Sci Islam Repub Iran 21(3):279–284

    CAS  Google Scholar 

  16. Moreno E, Rodrigo SG, Bozhevolnyi SI, Martín-Moreno L, García-Vidal FJ (2008) Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett 100:023901

    Article  PubMed  Google Scholar 

  17. Han Z, Radko IP, Mazurski N, Desiatov B, Beermann J, Albrektsen O, Levy U, Bozhevolnyi SI (2015) On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides. Nano Lett 15:476–480

    Article  CAS  PubMed  Google Scholar 

  18. Ma Y, Li J, Cada M, Bian Y, Han Z, Ma Y, Iqbal M, Pištora J (2021) Plasmon generation and routing in nanowire-based hybrid plasmonic coupling systems with incorporated nanodisk antennas. IEEE J Sel Top Quantum Electron 27:1–7

    CAS  Google Scholar 

  19. Kumar S, Kumar P, Ranjan R (2022) A metal-cap wedge shape hybrid plasmonic waveguide for nano-scale light confinement and long propagation range. Plasmonics 17:95–105

    Article  CAS  Google Scholar 

  20. Zhang Q, Pan J, Wang S, Du Y, Wu J (2022) A triangle hybrid plasmonic waveguide with long propagation length for ultradeep subwavelength confinement. Curr Comput-Aided Drug Des 12:64

    CAS  Google Scholar 

  21. Huang CC, Chang RJ, Huang CC (2021) Nanostructured hybrid plasmonic waveguide in a slot structure for high-performance light transmission. Opt Express 29:29341–29356

    Article  CAS  PubMed  Google Scholar 

  22. West P, Ishii S, Naik G, Emani N, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photon Rev 4:795–808

    Article  CAS  Google Scholar 

  23. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294

    Article  CAS  PubMed  Google Scholar 

  24. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291

    Article  CAS  PubMed  Google Scholar 

  25. Shahmansouri M, Farokhi B, Aboltaman R (2017) Exchange interaction effects on low frequency surface waves in a quantum plasma slab. Phys Plasmas 24:054505

    Article  Google Scholar 

  26. Shahmansouri M, Mahmodi-Moghadam M (2017) Quantum electrostatic surface waves in a hybrid plasma waveguide: effect of nano-sized slab

  27. Teng D, Wang K (2021) Theoretical analysis of terahertz dielectric-loaded graphene waveguide. Nanomaterials 11:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tu PY, Huang CC (2022) Analysis of hybrid plasmon-phonon-polariton modes in hBN/graphene/hBN stacks for mid-infrared waveguiding. Opt Express 30:2863–2876

    Article  CAS  PubMed  Google Scholar 

  29. Asadi A, Jafari MR, Shahmansouri M (2023) Simulation optimized design of graphene-based hybrid plasmonic waveguide. Indian J Phys Published: 30 Jan 2023

  30. Liu T, Zhou C, Xiao S (2021) Tailoring anisotropic absorption in a borophene-based structure via critical coupling. Opt Express 29:8941–8950

    Article  PubMed  Google Scholar 

  31. Zhang J, Zhang Z, Song X, Zhang H, Yang J (2021) Infrared plasmonic sensing with anisotropic two-dimensional material borophene. Nanomaterials 11:1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dereshgi SA, Liu Z, Aydin K (2020) Anisotropic localized surface plasmons in borophene. Opt Express 28:16725–16739

    Article  CAS  PubMed  Google Scholar 

  33. Zhao H, Wang Y, Xue T, Su H, Zhang J (2017) Direct evidence of visible surface plasmon excitation in ITO film coated on LiNbO3 slabs. Opt Express 25:6227–6233

    Article  CAS  PubMed  Google Scholar 

  34. Timusk T, Carbotte JP, Homes CC, Basov DN (2016) Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films. Phys Rev B 93:235417

    Article  Google Scholar 

  35. He X, Liu F, Lin F, Shi W (2021) Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides. Opt Lett 46:472–475

    Article  PubMed  Google Scholar 

  36. He X, Lin F, Liu F, Shi W (2022) Tunable terahertz Dirac-semimetal hybrid plasmonic waveguides. Opt Express 12:73–84

    Article  CAS  Google Scholar 

  37. Zheng K, Song J, Qu J (2018) Hybrid low-permittivity slot-rib plasmonic waveguide based on monolayer two-dimensional transition metal dichalcogenide with ultra-high energy confinement. Opt Express 26:15819–15824

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Hong Q, Zou J, Meng Q, Qin S, Zhu Z (2020) Ultra-narrowband visible light absorption in a monolayer MoS2 based resonant nanostructure. Opt Express 28:27608–27614

    Article  CAS  PubMed  Google Scholar 

  39. Sun J, Li Y, Hu H, Chen W, Zheng D, Zhang S, Xu H (2021) Strong plasmon–exciton coupling in transition metal dichalcogenides and plasmonic nanostructures. Nanoscale 13:4408–4419

    Article  CAS  PubMed  Google Scholar 

  40. Teng D, Tian Y, Hu X, Guan Z, Gao W, Li P, Fang H, Yan J, Wang Z, Wang K (2022) Sodium-based cylindrical plasmonic waveguides in the near-infrared. Nanomaterials 12:1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Teng D, Wang K, Huan Q, Zhao Y, Tang Y (2019) High-performance transmission of surface plasmons in graphene-covered nanowire pairs with substrate. Nanomaterials 9:1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schinke C, Christian-Peest P, Schmidt J, Brendel R, Bothe K, Vogt MR, Kröger I, Winter S, Schirmacher A, Lim S et al (2015) Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv 5:067168

    Article  Google Scholar 

  43. Vargas WE (2017) Dielectric functions of Pd and Zr transition metals: an application of Drude-Lorentz models with simulated annealing optimization. Appl Opt 56:1266–1275

    Article  CAS  PubMed  Google Scholar 

  44. Asadi A, Jafari MR, Shahmansouri M (2022) Characteristics of a symmetric mid-infrared graphene dielectric hybrid plasmonic waveguide with ultra-deep subwavelength confinement. Plasmonics 17:1819–1829

    Article  CAS  Google Scholar 

  45. Buckley R, Berini P (2007) Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Opt Express 15:12174–12182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mehran Shahmansouri proposed the concept and Mohammad Reza Jafari supervised the physical interpretations. Akbar Asadi performed the calculations and analyzed numerical data. All the authors have discussed the results thoroughly and contributed to the writing and review of the manuscript.

Corresponding author

Correspondence to Mehran Shahmansouri.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, M.R., Asadi, A. & Shahmansouri, M. Ultra-deep Subwavelength Confinement Palladium-Based Elliptical Cylinder Plasmonic Waveguide in the Near-Infrared Range. Plasmonics 18, 1037–1045 (2023). https://doi.org/10.1007/s11468-023-01830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01830-z

Keywords

Navigation