Skip to main content
Log in

Plasmonic Refractive Index Sensor and Plasmonic Bandpass Filter Including Graded 4-Step Waveguide Based on Fano Resonances

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A plasmonic refractive index sensor including a metal–insulator-metal (MIM) waveguide with four teeth is proposed. Transmittance (T), sensitivity (S), and figure of merit (FOM) were investigated numerically and analyzed via the finite difference time domain method (FDTD). The simulation results show the generation of double Fano resonances in the system that the resonance wavelength and the resonance line-shapes can be adjusted by changing the geometry of the device. This device is optimized by changing the length of the teeth and their distance from each other. As a result, the maximum sensitivity and FOM values are 1078 nm/RIU and 1.54 × 106, respectively. Due to proper performance and adjustable Fano resonance points, this structure is significant for fabricating sensitive refractive index sensor and plasmonic bandpass filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code Availability

All codes included in this paper are available upon request by contact with the corresponding author.

References

  1. Bianconi A (2002) Ugo Fano and shape resonances, AIP Conference Proceedings, 19th Int. Conference Roma June 24–28, 2002

  2. Yanga Q, Liua X, Guoa F, Baib H, Zhanga B, Lia X, Tana Y, Zhanga Z (2020) Multiple Fano resonance in MIM waveguide system with cross-shaped cavity. Optik 220:165163. https://doi.org/10.1016/j.ijleo.2020.165163

    Article  CAS  Google Scholar 

  3. Chen J, Li J, Liu X, Rohimah S, Tian H, Qi D (2021) Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt Commun 482:126563

    Article  CAS  Google Scholar 

  4. Chen Z, Yu L, Wang L, Duan G, Zhao Y, Xiao J (2015) Sharp asymmetric line shapes in a plasmonic waveguide system and its application in nanosensor. IEEE J Lightwave Technol 33(15):3250–3253

    Article  Google Scholar 

  5. Wang J, Liu X, Li L, He J, Fan C, Tian Y, Ding P, Chen D, Xue Q, Liang E (2013) Huge electric field enhancement and highly sensitive sensing based on the Fano resonance effect in an asymmetric nanorod pair. J Opt 15(10):105003

    Article  Google Scholar 

  6. Hassan MF, Hasan MM, Ahmed MI, Sagor RH (2020) Numerical investigation of a plasmonic refractive index sensor based on rectangular MIM topology. IEEE 2020 international seminar on intelligent technology and its applications (ISITIA) 22–23 July 2020

  7. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(46):824–830

    Article  CAS  Google Scholar 

  8. Tsigaridas GN (2017) A study on refractive index sensors based on optical micro-ring resonators. Photonic Sens 7:217–225. https://doi.org/10.1007/s13320-017-0418-0

    Article  CAS  Google Scholar 

  9. Wahsheh RA, Lu Z, Abushagur MAG (2009) Nanoplasmonic couplers and splitters. Opt Express 17(21):19033–19040

    Article  Google Scholar 

  10. Lai W, Wen K, Lin J, Guo Z, Hu Q, Fang Y (2018) Plasmonic filter and sensor based on a subwavelength end-coupled hexagonal resonator. Appl Opt 57(12):6369–6374

    Article  CAS  Google Scholar 

  11. Wu YD (2014) High transmission efficiency wavelength division multiplexer based on metal–insulator–metal plasmonic waveguides. IEEE J Lightwave Technol 32(24):4844–4848. https://doi.org/10.1109/JLT.2014.2359938

    Article  Google Scholar 

  12. Lu Q, Wang Z, Huang Q, Jiang W, Wu Z, WangY XJ (2017) Plasmon-induced transparency and high-performance slow light in a plasmonic single-mode and two-mode resonators coupled system. IEEE J Lightwave Technol 35(9):1710–1717. https://doi.org/10.1109/JLT.2017.2648819

    Article  CAS  Google Scholar 

  13. Min C, Veronis G (2009) Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt Express 17(13):10757–10766

    Article  CAS  Google Scholar 

  14. Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4(6):e294. https://doi.org/10.1038/lsa.2015.67

  15. Xiao G, Xu Y, Yang H, Ou Z, Chen J, Li H, Liu X, Zeng L, Li J (2021) High sensitivity plasmonic sensor based on Fano resonance with inverted U-shaped resonator. Sensors 21(4):1164. https://doi.org/10.3390/s21041164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Achi SE, Hocini A, Salah HB, Harhouz A (2020) Refractive index sensor MIM based waveguide coupled with a slotted side resonator. Prog Electromagn Res M 96:147–156. https://doi.org/10.2528/PIERM20061803

    Article  Google Scholar 

  17. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  18. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204. https://doi.org/10.1038/nmat2630

    Article  CAS  PubMed  Google Scholar 

  19. Su H, Yan S, Yang X, Guo J, Wang J, Hua E (2020) Sensing features of the Fano resonance in an MIM waveguide coupled with an elliptical ring resonant cavity. Appl Sci 10(15):5096. https://doi.org/10.3390/app10155096

    Article  CAS  Google Scholar 

  20. Sorger VJ, Oulton RF, Ma RM, Zhang X (2012) Toward integrated plasmonic circuits. MRS Bull 37:728–738. https://doi.org/10.1557/mrs.2012.170

    Article  CAS  Google Scholar 

  21. Guo J, Yang X, Wang Y, Wang M, Hua E, Yan S (2020) Refractive index nanosensor with simple structure based on Fano resonance. IEEE Photonics J 12(4):4800710. https://doi.org/10.1109/JPHOT.2020.3015988

    Article  CAS  Google Scholar 

  22. Fang Y, Wen K, Li Z, Wu B, Guo Z (2019) Plasmonic refractive index sensor with multi-channel Fano resonances based on MIM waveguides. Mod Phys Lett B 34(16):2050173. https://doi.org/10.1142/S0217984920501730

    Article  Google Scholar 

  23. Wang M, Zhang M, Wang Y, Zhao R, Yan S (2019) Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19(4):791. https://doi.org/10.3390/s19040791

    Article  CAS  PubMed Central  Google Scholar 

  24. Zhang X, Qi Y, Zhou P, Gong H, Hu B, Yan C (2018) Refractive index sensor based on Fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photonic Sens 8:367–374

    Article  CAS  Google Scholar 

  25. Fang Y, Wen K, Li Z, Wu B, Chen L, Zhou J, Zhou D (2018) Multiple Fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photonics J 11(4):4801308. https://doi.org/10.1109/JPHOT.2019.2914483

    Article  Google Scholar 

  26. Sagor RH, Hassan MdF, Yaseer AA, Surid E, Ahmed MdI (2020) Highly sensitive refractive index sensor optimized for blood group sensing utilizing the Fano resonance. Appl Nano sci 11:521–534

    Article  Google Scholar 

  27. Wang Y, Yu S, Zhao T, Hu Z, Wang S (2020) High figure of merit refractive index nanosensor based on Fano resonances in waveguide. J Nanophotonics 14(2):026021. https://doi.org/10.1117/1.JNP.14.026021

    Article  Google Scholar 

  28. Yu S, Zhao T, Yu J, Pan D (2019) Tuning multiple Fano resonances for on-chip sensors in a plasmonic system. Sensors 19(7):1559. https://doi.org/10.3390/s19071559

    Article  CAS  PubMed Central  Google Scholar 

  29. Wen K, Hu Y, Chen L, Zhou J, Lei L, Guo Z (2015) Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10:27–32. https://doi.org/10.1007/s11468-014-9772-6

    Article  CAS  Google Scholar 

  30. El HR, Farkhsi A, Mahboub O (2020) Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl Phys A 126:486. https://doi.org/10.1007/s00339-020-03660-w

    Article  CAS  Google Scholar 

  31. Zhu J, Lou J (2020) High-sensitivity Fano resonance temperature sensor in MIM waveguides coupled with a polydimethylsiloxane-sealed semi-square ring resonator. Results Phys 18:103183

    Article  Google Scholar 

  32. Qiao L, Zhang G, Wang Z, Fan G, Yan Y (2018) Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt Commun 433:144–149

    Article  Google Scholar 

  33. Chen Y, Luo P, Liu X, Di Y, Han S, Cui X, He L (2018) Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator. Opt Laser Technol 101:273–278

    Article  CAS  Google Scholar 

  34. Zhang ZD, Wang RB, Zhang ZY, Tang J, Zhang WD, Xue CY, Yan SB (2017) Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12:1007–1013. https://doi.org/10.1007/s11468-016-0352-9

    Article  CAS  Google Scholar 

  35. Binfeng Y, Hu G, Zhang R, Yiping C (2016) Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. J Opt 18(5):055002

    Article  Google Scholar 

  36. Pang S, Huo Y, Xie Y, Hao L (2016) Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor. Opt Commun 381:409–413

    Article  CAS  Google Scholar 

  37. Zhang Z, Luo L, Xue C, Zhang W, Yan S (2016) Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 16(5):642. https://doi.org/10.3390/s16050642

    Article  PubMed Central  Google Scholar 

  38. Qiang CZ, Wei QJ, Jing C, Dong LY, Qiang HZ, Qiang LW, Jun XJ, Qian S (2013) Fano resonance based on multimode interference in symmetric plasmonic structures and its applications in plasmonic nanosensors. Chin Phys Lett 30(5):057301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have same contribution in the analytical and numerical calculations and read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Mirzanejhad.

Ethics declarations

Ethics Approval

They confirm ethics are approved in this manuscript and they agree with contribution in this publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najjari, V., Mirzanejhad, S. & Ghadi, A. Plasmonic Refractive Index Sensor and Plasmonic Bandpass Filter Including Graded 4-Step Waveguide Based on Fano Resonances. Plasmonics 17, 1809–1817 (2022). https://doi.org/10.1007/s11468-022-01667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01667-y

Keywords

Navigation