Skip to main content
Log in

A Facile Approach to Distinct Unusual Sucrose in Honey by Titanium Oxide Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, we present a new approach to distinguish original honey from sucrose-overdosed one by a colloid of oxygen-deficient TiO2 nanoparticles (NPs). Results show that the original honey does not affect the colloidal NPs while sucrose-overdosed one precipitates it in a few seconds. Our studies show that the precipitating time has a non-linear dependence on absorption peak intensity, and the settling rate increases up to 0.185 cm min−1 by increasing sucrose in honey. Our results show that sucrose in honey can enhance the hydrodynamic radius of NPs up to 482.9 nm by suppressing zeta potential besides agglomerating the NPs and a blue shift in the absorption peak (up to 20 eV). The macroscopic behavior of the honey-solved colloid can be applied to determine the quality of honey according to the settling rate in a few minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Perry EA, Thomas H, Samra HR, Edmonstone S, Davidson L, Faulkner A, Petermann L, Manafò E, Kirkpatrick SI (2017) Public Health Nutr 20(13):2406–2415

    Article  Google Scholar 

  2. Monteiro CA, Cannon G, Levy RB, Moubarac J-C, Louzada ML, Rauber F, Khandpur N, Cediel G, Neri D, Martinez-Steele E (2019) Public Health Nutr 22(5):936–941

    Article  Google Scholar 

  3. Araya S, Elberg A, Noton C, Schwartz D (2019) Available at SSRN 3195500

  4. Li H, Ahmad W, Rong Y, Chen Q, Zuo M, Ouyang Q, Guo Z (2020) Food Control 107:106761

  5. do Nascimento KS, Sattler JAG, Macedo LFL, González CVS, de Melo ILP, da Silva Araújo E, Granato D, Sattler A, de Almeida-Muradian LB (2018) LWT 91:85–94

  6. Martinotti S, Ranzato E (2018) Journal of functional biomaterials 9(2):34

    Article  Google Scholar 

  7. Mijanur Rahman M, Gan SH, Khalil M (2014) Neurological effects of honey: current and future prospects. Evidence-based complementary and alternative medicine

  8. Liyanage D, Mawatha B (2017) J Apith

  9. Bobiş O, Dezmirean DS, Moise AR (2018) Oxidative medicine and cellular longevity

  10. da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R (2016) Food Chem 196:309–323

    Article  Google Scholar 

  11. Lindqvist DN, Pedersen HÆ, Rasmussen LH (2018) J Chromatogr B 1081:126–130

    Article  Google Scholar 

  12. Mente A, Irvine EJ, Honey RJDA, Logan AG (2009) J Nutr 139(4):743–749

    Article  CAS  Google Scholar 

  13. Zábrodská B, Vorlová L (2015) Acta Vet Brno 83(10):85–102

    Article  Google Scholar 

  14. Utzeri VJ, Ribani A, Schiavo G, Bertolini F, Bovo S, Fontanesi L (2018) Food Control 86:342–349

    Article  CAS  Google Scholar 

  15. Zainuddin NH, Fen YW, Alwahib AA, Yaacob MH, Bidin N, Omar NAS, Mahdi MA (2018) Optik 168:134–139

    Article  CAS  Google Scholar 

  16. Serrano S, Rodríguez I, Moreno R, Rincón F (2019) CYTA J Food 17(1):574–580

    Article  CAS  Google Scholar 

  17. Mustafa F, Andreescu S (2020) RSC Adv 10(33):19309–19336

    Article  CAS  Google Scholar 

  18. Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G (2020) Nano-Micro Letters 12(1):45

    Article  CAS  Google Scholar 

  19. Huang D, Zhao J, Wang M, Zhu S (2020) Snowflake-like gold nanoparticles as SERS substrates for the sensitive detection of organophosphorus pesticide residues. Food Control 108:106835

  20. Ahn H, Song H, Choi J-R, Kim K (2018) Sensors 18(1):98

    Google Scholar 

  21. Jiang N, Zhuo X, Wang J (2017) Chem Rev 118(6):3054–3099

    Article  Google Scholar 

  22. Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ (2018) Chem Rev 118(6):3121–3207

    Article  CAS  Google Scholar 

  23. Al Azad S, Morshed MN, Deb H, Alam MAM, Hasan KF, Shen X (2017) American Journal of Nanoscience and Nanotechnology Research 5(1):1–20

  24. Yin H, Kuwahara Y, Mori K, Cheng H, Wen M, Huo Y, Yamashita H (2017) J Phys Chem C 121(42):23531–23540

    Article  CAS  Google Scholar 

  25. Su L, Xiong Y, Chen Z, Duan Z, Luo Y, Zhu D, Ma X (2019) Sens Actuators, B Chem 279:320–326

    Article  CAS  Google Scholar 

  26. Drozd VS, Zybina NA, Abramova KE, Parfenov MY, Kumar U, Valdés H, Smirniotis PG, Vorontsov A (2019) Oxygen vacancies in nano-sized TiO2 anatase nanoparticles. Solid State Ionics 339:115009

  27. Chen Q, Wang H, Wang C, Guan R, Duan R, Fang Y, Hu X (2020) Activation of molecular oxygen in selectively photocatalytic organic conversion upon defective TiO2 nanosheets with boosted separation of charge carriers. Appl Catal B Environ 1(262):118258

  28. Yang Y, Yin LC, Gong Y, Niu P, Wang JQ, Gu L, Chen X, Liu G, Wang L, Cheng HM (2018) Adv Mater 30(6):1704479

    Article  Google Scholar 

  29. Ruffino F, Piccitto G, Grimaldi M (2014) J Nanosci

  30. Torkaman M, Rasuli R, Taran L (2020) Results Phys 103229

  31. Liu G, Yang HG, Wang X, Cheng L, Lu H, Wang L, Lu GQ, Cheng H-M (2009) J Phys Chem C 113(52):21784–21788

    Article  CAS  Google Scholar 

  32. Zuber A, Purdey M, Schartner E, Forbes C, Van der Hoek B, Giles D, Abell A, Monro T, Ebendorff-Heidepriem H (2016) Sens Actuators, B Chem 227:117–127

    Article  CAS  Google Scholar 

  33. Lau Y, Krishnappan B (1992) J Hydraul Res 30(5):673–684

    Article  Google Scholar 

  34. Swinehart DF (1962) J Chem Educ 39(7):333

    Article  CAS  Google Scholar 

  35. Bousiakou LG, Gebavi H, Mikac L, Karapetis S, Ivanda M (2019) Croat Chem Acta 92(4):1–16

    Google Scholar 

  36. Hermansson M (1999) Colloids Surf, B 14(1–4):105–119

    Article  CAS  Google Scholar 

  37. Chang Y-I, Chang P-K (2002) Colloids Surf, A 211(1):67–77

    Article  CAS  Google Scholar 

  38. Leroy P, Tournassat C, Bizi M (2011) J Colloid Interface Sci 356(2):442–453

    Article  CAS  Google Scholar 

  39. Vergouw J, Difeo A, Xu Z, Finch J (1998) Miner Eng 11(7):605–614

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the University of Zanjan.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and supervision, methodology, writing—review and editing, R. Rasuli; formal analysis investigation, writing—original draft preparation, writing—review and editing, M. Sajadi.

Corresponding author

Correspondence to Reza Rasuli.

Ethics declarations

Consent for Publication

All authors declare that they participate in the study and in the development of this manuscript. All authors have read final version and give consent for the article to be published.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajadi, M., Rasuli, R. A Facile Approach to Distinct Unusual Sucrose in Honey by Titanium Oxide Nanoparticles. Plasmonics 17, 65–70 (2022). https://doi.org/10.1007/s11468-021-01490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01490-x

Keywords

Navigation