Skip to main content

Advertisement

Log in

High-Performance Tapered Fiber Surface Plasmon Resonance Sensor Based on the Graphene/Ag/TiO2 Layer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract 

In this paper, a highly sensitive surface plasmon resonance sensor is proposed on the basis of a miniature tapered single-mode fiber. The sensing area of the tapered fiber is coated with graphene, silver, and titanium dioxide layer. The graphene layer is used to increase the light absorption rate, and the titanium dioxide layer is used to protect the silver layer from oxidation and improve the sensor sensitivity due to its high dielectric constant. According to the simulation results of COMSOL Multiphysics software, when the graphene is 15 layers, the silver layer is 40 nm, and the titanium dioxide is 20 nm, high-performance SPR can be obtained. The refractive index detection range of this sensor is 1.32–1.38, and its sensitivity can reach 8750 nm/RIU when the external refractive index is 1.38. The research results have potential application value for the design of high-performance SPR sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhao Y, Lei M, Liu SX et al (2018) Smart hydrogel-based optical fiber SPR sensor for pH measurements. Sensors Actuators B Chem 261:226–232

    Article  CAS  Google Scholar 

  2. Wang WJ, Mai ZG, Chen YZ et al (2017) A lable-free fiber optic SPR biosensor for specific detection of C-reactive protein. Sci Rep 7:16904

    Article  Google Scholar 

  3. Zeng S, Baillargeat D, Ho HP et al (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    Article  CAS  Google Scholar 

  4. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch 23:2135–2136

    Article  CAS  Google Scholar 

  5. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12:213–220

  6. Baiad MD, Kashyap R (2015) Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings. Opt Lett 40:115–118

    Article  Google Scholar 

  7. Kulchin YN, Vitrik OB, Dyshlyuk AV et al (2014) Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method. Opt Express 22:22196–22201

    Article  Google Scholar 

  8. Zhang X, Liang P, Wang Y et al (2017) Cascaded distributed multichannel fiber SPR sensor based on gold film thickness adjustment approach. Sensors Actuators A 267:526–531

  9. Wang XF, Zhang JQ, Tian K et al (2018) Investigation of a novel SMS fiber based planar multimode waveguide and its sensing performance. Opt Express 26:26534–26543

  10. Rifat AA, Ahmed R, Yetisen AK et al (2017) Photonic crystal fiber based plasmonic sensors. Sensors Actuators B Chem 243:311–325

    Article  CAS  Google Scholar 

  11. Chen YT, Liao YY, Chen CC et al (2019) Surface plasmons coupled two-dimensional photonic crystal biosensors for Epstein-Barr virus protein detection. Sensors Actuators B Chem 291:81–88

    Article  CAS  Google Scholar 

  12. Piliarik M, Homola J, Manková Z et al (2003) Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sensors Actuators B Chem 90:236–242

    Article  CAS  Google Scholar 

  13. Al-Qazwini Y, Noor ASM, Al-Qazwini Z et al (2016) Refractive index sensor based on SPR in symmetrically etched plastic optical fibers. Sensors Actuators A 246:136–139

    Article  Google Scholar 

  14. Liu BH, Jiang YX, Zhu XS et al (2013) Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. Opt Express 21:32349–32357

    Article  Google Scholar 

  15. Zhang H, Chen Y, Wang H et al (2018) Titanium dioxide nanoparticle modified plasmonic interface for enhanced refractometric and biomolecular sensing. Opt Express 26:33226

    Article  CAS  Google Scholar 

  16. Shukla S, Sharma NK, Sajal V (2015) Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study. Sensors Actuators B Chem 206:463–470

    Article  CAS  Google Scholar 

  17. Kim HM, Park JH, Lee SK et al (2019) Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor. Sci Rep 9:15605

  18. Liu K, Xue M, Jiang J et al (2018) Theoretical modeling of a coupled plasmon waveguide resonance sensor based on multimode optical fiber. Opt Communications 410:552–558

    Article  CAS  Google Scholar 

  19. Rifat AA, Mahdiraji GA, Sua YM et al (2016) Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt Express 24:2485–2495

    Article  CAS  Google Scholar 

  20. Zeng S, Hu S, Xia J et al (2015) Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors Actuators B Chem 207:801–810

  21. Cai Y, Li W, Feng Y et al (2020) Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration. Chinese Physics B 29:110701

  22. Wang H, Zhang H, Dong JL et al (2018) Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer. Photonics Res 6:485–491

    Article  CAS  Google Scholar 

  23. Liu K, Zhang JH, Jiang JF et al (2020) MoSe2-Au based sensitivity enhanced optical fiber surface plasmon resonance biosensor for detection of goat-anti-rabbit IgG. IEEE Access 8:660–668

    Article  Google Scholar 

  24. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  25. Yan F, Zhang Y, Zhang S et al (2015) Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Microchim Acta 182:855–862

    Article  CAS  Google Scholar 

  26. Wang FM, Sun Z, Liu C et al (2017) A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 12:1847–1853

    Article  Google Scholar 

  27. Zhang C, Li Z, Jiang SZ et al (2017) U-bent fiber optic SPR sensor based on graphene/AgNPs. Sensors Actuators B Chem 251:127–133

    Article  CAS  Google Scholar 

  28. Kumar NJ, Rajan J (2017) Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing. Appl Opt 56:3510–3517

    Article  Google Scholar 

  29. Luan N, Wang R, Lv W, Yao J et al (2015) Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt Express 23:8576–8582

    Article  CAS  Google Scholar 

  30. Coelho L, Almeida J, Santos JL et al (2015) Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres. Plasmonics 10:319–327

    Article  CAS  Google Scholar 

  31. Shin JC, Yoon MS, Han YG et al (2015) Relative humidity sensor based on an optical microfiber knot resonator with a polyvinyl alcohol overlay. J Lightwave Technol 34:4511–4515

    Article  Google Scholar 

  32. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science and Business Media

  33. Toto S, Jalil A, Rahman R et al (2008) Theoretical and empirical comparison of coupling coefficient and refractive index estimation for coupled waveguide fiber. J Appl Sci Eng Technol 2:49–52

  34. Sharma AK, Gupta BD (2007) On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J Appl Phys 101:093111

  35. Devore JR (1951) Refractive Indices of Rutile and Sphalerite. J Opt Soc Am 41:266–266

    Article  Google Scholar 

  36. Bruna D, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94:031901

  37. Qazwini Y, Arasu PT, Noor ASM et al (2011) Numerical investigation of the performance of an SPR-based optical fiber sensor in an aqueous environment using finite-difference time domain. Proceedings of the 2nd International Conference on Photonics 1:1–4

  38. Dash JN, Jha R (2014) SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol Lett 26:595–598

    Article  CAS  Google Scholar 

  39. Pandey AK, Sharma AK (2018) Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer. Photon Nanostruct 28:94–99

    Article  Google Scholar 

  40. Song H, Wang Q, Zhao WM et al (2020) A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber. Opt Lasers Eng 132:106135

  41. Yang XC, Lu Y, Liu BL et al (2017) Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12:1–8

    Article  Google Scholar 

  42. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694

    Article  CAS  Google Scholar 

  43. Koppens FHL, Chang DE, Abajo FJGD et al (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Research Projects of Jiangsu Province University (20KJA510001), China Postdoctoral Science Foundation (2018T110480), Open Foundation of State Key Laboratory of Luminescent Materials and Devices (2020-skllmd-03), Research Center of Optical Communications Engineering & Technology, Jiangsu Province (ZXF201904), and Open Foundation of State Key Laboratory of Bioelectronics, Southeast University.

Author information

Authors and Affiliations

Authors

Contributions

Dan Wang and Wei Li conceived the idea. Chen Zhu and Jie Xu developed the theory. Qinrong Zhang and Jinze Li performed the simulation. Dan Wang, Benquan Liang, and Zhenkai Peng analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Consent for Publication

All the authors agree to publish these papers.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Li, W., Zhang, Q. et al. High-Performance Tapered Fiber Surface Plasmon Resonance Sensor Based on the Graphene/Ag/TiO2 Layer. Plasmonics 16, 2291–2303 (2021). https://doi.org/10.1007/s11468-021-01483-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01483-w

Keywords

Navigation