Skip to main content
Log in

Novel Synthesis of Maltol Capped Copper Nanoparticles and Their Synergistic Antibacterial Activity with Antibiotics

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This study is the first-ever reported synthesis of maltol capped copper nanoparticles (McCuNPs) using maltol as a capping agent by chemical reduction scheme. Suitable surface plasmon resonance (SPR) band was achieved by optimizing parameters such as variable concentrations of copper sulfate, maltol, and sodium borohydride. McCuNPs were characterized by visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and dynamic light scattering (DLS) techniques. Results revealed that the black-colored McCuNPs exhibited surface plasmon resonance band at 576 nm, and –OH, C–O, and C = O functional groups took part in the reduction of Cu+2 to Cu0. Synthesized McCuNPs were found to be monodispersed and spherical in shaped, with an average size of 50 nm (size range of 50–60 nm). Moreover, McCuNPs remained stable at 4 °C in an aqueous phase for 1 week in a tightly capped vial. The antimicrobial activity of McCuNPs (alone) and in combination with ciprofloxacin⋅HCl (Cip⋅HCl) and streptomycin sulfate (STR⋅SO4) was also investigated against clinical isolates of pathogenic bacterial strains by disc diffusion method. The McCuNPs alone showed zone of inhibitions against all tested strains, whereas its combination with Cip⋅HCl and STR⋅SO4 showed enhanced synergistic effect. However, Cip⋅HCl adsorbed McCuNPs revealed improved inhibition as compared to STR⋅SO4 adsorbed McCuNPs due to its active mode of action against these bacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2

Similar content being viewed by others

Data Availability

The data and materials that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Camacho-Flores B, Martínez-Álvarez O, Arenas-Arrocena M, Garcia-Contreras R, Argueta-Figueroa L et al (2015) Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J Nanomater 16:423

    Google Scholar 

  2. Ahmed KBA, Sengan M, Kumar S, Veerappan A (2016) Highly selective colorimetric cysteine sensor based on the formation of cysteine layer on copper nanoparticles. Sens Actuators, B Chem 233:431–437

    Article  CAS  Google Scholar 

  3. Santhoshkumar J, Agarwal H, Menon S, Rajeshkumar S, Kumar SV (2019) A biological synthesis of copper nanoparticles and its potential applications. Elsevier, Green Synthesis, Characterization and Applications of Nanoparticles, pp 199–221

    Google Scholar 

  4. Khurana C, Sharma P, Pandey O, Chudasama B (2016) Synergistic effect of metal nanoparticles on the antimicrobial activities of antibiotics against biorecycling Microbes. J Mater Sci Technol 32:524–532

    Article  CAS  Google Scholar 

  5. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25:135101

    Article  PubMed  CAS  Google Scholar 

  6. Bogdanović U, Lazić V, Vodnik V, Budimir M, Marković Z et al (2014) Copper nanoparticles with high antimicrobial activity. Mater Lett 128:75–78

    Article  CAS  Google Scholar 

  7. Susman MD, Feldman Y, Vaskevich A, Rubinstein I (2012) Chemical deposition and stabilization of plasmonic copper nanoparticle films on transparent substrates. Chem Mater 24:2501–2508

    Article  CAS  Google Scholar 

  8. Cheng X, Zhang X, Yin H, Wang A, Xu Y (2006) Modifier effects on chemical reduction synthesis of nanostructured copper. Appl Surf Sci 253:2727–2732

    Article  CAS  Google Scholar 

  9. Zhang H, Siegert U, Liu R, Cai WB (2009) Facile fabrication of ultrafine copper nanoparticles in organic solvent. pp.705–708

  10. Hyungsoo C, Sung-Ho P (2004) Seedless growth of free-standing copper nanowires by chemical vapor deposition. J Am Chem Soc 126:6248–6249

    Article  CAS  Google Scholar 

  11. Lee JH, Kim DK, Kang K (2006) Preparation of Cu nanoparticles from Cu powder dispersed in 2-propanol by laser ablation. Bull Korean Chem Soc 27:1869–1872

    Article  CAS  Google Scholar 

  12. Salavati-Niasari M, Fereshteh Z, Davar F (2009) Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28:126–130

    Article  CAS  Google Scholar 

  13. Zhang QL, Yang ZM, Ding BJ, Lan XZ, Guo YJ (2010) Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Transactions of Nonferrous Metals Society of China 20:s240–s244

    Article  CAS  Google Scholar 

  14. Pulkkinen P, Shan J, Leppänen K, Känsäkoski A, Laiho A et al (2009) Poly (ethylene imine) and tetraethylenepentamine as protecting agents for metallic copper nanoparticles. ACS Appl Mater Interfaces 1:519–525

    Article  CAS  PubMed  Google Scholar 

  15. Yang JG, Zhou Yl, Okamoto T, Bessho T, Satake S et al (2006) Preparation of oleic acid-capped copper nanoparticles. Chem Lett 35:1190–1191

    Article  CAS  Google Scholar 

  16. Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci: Nanosci Nanotechnol 2:015009

    Google Scholar 

  17. Reddy V, Dayal D, Szalda DJ, Cosenza SC, Reddy MR (2012) Syntheses, structures, and anticancer activity of novel organometallic ruthenium–maltol complexes. J Organomet Chem 700:180–187

    Article  CAS  Google Scholar 

  18. Ciupa A, Paul A, Caggiano L (2013) Multicellular aggregation of maltol-modified cells triggered by Fe 3+ ions. Chem Commun 49:10148–10150

    Article  CAS  Google Scholar 

  19. Thompson KH, Barta CA, Orvig C (2006) Metal complexes of maltol and close analogues in medicinal inorganic chemistry. Chem Soc Rev 35:545–556

    Article  CAS  PubMed  Google Scholar 

  20. Naqvi S, Anwer H, Ahmed SW, Siddiqui A, Shah MR et al (2019) Synthesis and characterization of maltol capped silver nanoparticles and their potential application as an antimicrobial agent and colorimetric sensor for cysteine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy: 118002.

  21. Kandioller W, Hartinger CG, Nazarov AA, Kasser J, John R et al (2009) Tuning the anticancer activity of maltol-derived ruthenium complexes by derivatization of the 3-hydroxy-4-pyrone moiety. J Organomet Chem 694:922–929

    Article  CAS  Google Scholar 

  22. Daniela CC, Gabriela M, Luminiţa P, Lucian D (2010) Synthesis and characterization of maltol modified magnetite nanoparticles. Rev Roum Chim 55:131–135

    Google Scholar 

  23. Hashim S, Ali SA, Siddiqui A, Ahmed SW, Naqvi SS et al (2020) Sodium dodecylbenzenesulfonate–based silver nanoparticles and their potent application as antibiofilm, antimicrobial agent, and trace level determination of amlodipine. Plasmonics: 1–15.

  24. Kora AJ, Rastogi L (2013) Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorganic chemistry and applications 2013.

  25. Soomro RA, Nafady A, Memon N, Sherazi TH, Kalwar NH (2014) L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions. Talanta 130:415–422

    Article  CAS  PubMed  Google Scholar 

  26. Abdulla-Al-Mamun M, Kusumoto Y, Muruganandham M (2009) Simple new synthesis of copper nanoparticles in water/acetonitrile mixed solvent and their characterization. Mater Lett 63:2007–2009

    Article  CAS  Google Scholar 

  27. Siddiqui A, Anwar H, Ahmed SW, Naqvi S, Shah MR et al (2020) Synthesis and sensitive detection of doxycycline with sodium bis 2-ethylhexylsulfosuccinate based silver nanoparticle. Spectrochim Acta Part A Mol Biomol Spectrosc 225:117489

    Article  CAS  Google Scholar 

  28. De S, Mandal S (2013) Surfactant-assisted shape control of copper nanostructures. Colloids Surf, A 421:72–83

    Article  CAS  Google Scholar 

  29. Guajardo-Pacheco MJ, Morales-Sánchez J, González-Hernández J, Ruiz F (2010) Synthesis of copper nanoparticles using soybeans as a chelant agent. Mater Lett 64:1361–1364

    Article  CAS  Google Scholar 

  30. Soomro RA, Sherazi SH, Memon N, Shah M, Kalwar N et al (2014) Synthesis of air stable copper nanoparticles and their use in catalysis. Adv Mater Lett 5:191–198

    Article  CAS  Google Scholar 

  31. Eastman J, Thompson L, Kestel B (1993) Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium. Phys Rev B 48:84

    Article  CAS  Google Scholar 

  32. Soomro RA, Nafady A (2015) Catalytic reductive degradation of methyl orange using air resilient copper nanostructures. J Nanomater 16:120

    Google Scholar 

  33. Yang TR, Horng HE, Yang HC, Jang L, Kang W et al (1994) Infrared properties of single crystal MgAl2O4, a substrate for high-temperature superconducting films. Physica C 235:1445–1446

    Article  Google Scholar 

  34. KIRAN KR (2014) Synthesis, characterization and antibacterial activity of Cu (II), Zn (II) ternary complexes with maltol and glycylglycine. Chem Sci Trans 3:592–601

    Google Scholar 

  35. Krishnakumar V, Barathi D, Mathammal R, Balamani J, Jayamani N (2014) Spectroscopic properties, NLO, HOMO–LUMO and NBO of maltol. Spectrochim Acta Part A Mol Biomol Spectrosc 121:245–253

    Article  CAS  Google Scholar 

  36. Gu X, Nguyen T, Oudina M, Martin D, Kidah B et al (2005) Microstructure and morphology of amine-cured epoxy coatings before and after outdoor exposures—an AFM study. JCT Res 2:547

    CAS  Google Scholar 

  37. Titus D, Samuel EJJ, Roopan SM (2019) Nanoparticle characterization techniques. Elsevier, Green Synthesis, Characterization and Applications of Nanoparticles, pp 303–319

    Google Scholar 

  38. Korayem MH, Khaksar H (2019) Investigating the impact models for nanoparticles manipulation based on atomic force microscope (according to contact mechanics). Powder Technol 344:17–26

    Article  CAS  Google Scholar 

  39. Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G et al (2013) Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater 2013:313081

    Article  CAS  Google Scholar 

  40. Hoo CM, Starostin N, West P, Mecartney ML (2008) A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res 10:89–96

    Article  CAS  Google Scholar 

  41. Wu SH, Chen H (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169

    Article  CAS  PubMed  Google Scholar 

  42. Grouchko M, Kamyshny A, Ben-Ami K, Magdassi S (2009) Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles. J Nanopart Res 11:713–716

    Article  CAS  Google Scholar 

  43. Umar S, Sulaiman F, Abdullah N, Mohamad SN. Investigation of the effect of pH adjustment on the stability of nanofluid; 2018. AIP Publishing LLC. pp. 020031.

  44. Nishanthi R, Malathi S, Palani P (2019) Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater Sci Eng, C 96:693–707

    Article  CAS  Google Scholar 

  45. Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M (2011) Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther 9:1035–1052

    Article  CAS  PubMed  Google Scholar 

  46. Kamaraj N, Rajaguru PY, kumar Issac P, Sundaresan S (2017) Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles. Asian J Pharm Sci 12: 353–362.

  47. Kooti M, Gharineh S, Mehrkhah M, Shaker A, Motamedi H (2015) Preparation and antibacterial activity of CoFe2O4/SiO2/Ag composite impregnated with streptomycin. Chem Eng J 259:34–42

    Article  CAS  Google Scholar 

  48. Sahoo S, Chakraborti CK, Mishra SC (2011) Qualitative analysis of controlled release ciprofloxacin/carbopol 934 mucoadhesive suspension. J Adv Pharm Technol Res 2:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tom RT, Suryanarayanan V, Reddy PG, Baskaran S, Pradeep T (2004) Ciprofloxacin-protected gold nanoparticles. Langmuir 20:1909–1914

    Article  CAS  PubMed  Google Scholar 

  50. Mohsen E, El-Borady OM, Mohamed MB, Fahim IS (2020) Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect. J Radiat Res Appl Sci 13:416–425

    Article  CAS  Google Scholar 

  51. Rakhmetova A, Alekseeva T, Bogoslovskaya O, Leipunskii I, Ol’khovskaya I et al (2010) Wound-healing properties of copper nanoparticles as a function of physicochemical parameters. Nanotechnol Russ 5:271–276

    Article  Google Scholar 

  52. Mahmoodi S, Elmi A, Hallaj-nezhadi S (2018) Copper nanoparticles as antibacterial agents. J Mol Pharm Org Process Res 6:1–7

    Article  Google Scholar 

  53. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A et al (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80

    Article  CAS  Google Scholar 

  54. Biswas P, Bandyopadhyaya R (2017) Synergistic antibacterial activity of a combination of silver and copper nanoparticle impregnated activated carbon for water disinfection. Environ Sci Nano 4:2405–2417

    Article  CAS  Google Scholar 

  55. Deng H, McShan D, Zhang Y, Sinha SS, Arslan Z et al (2016) Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol 50:8840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cavassin ED, de Figueiredo LFP, Otoch JP, Seckler MM, de Oliveira RA et al (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnol 13:64

    Article  CAS  Google Scholar 

  57. Thai T, Zito PM (2019) Ciprofloxacin

  58. Garrod LP (1948) Bactericidal action of streptomycin. BMJ 1:382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Giannousi K, Pantazaki A, Dendrinou-Samara C (2017) Copper-based nanoparticles as antimicrobials. Elsevier, Nanostructures for Antimicrobial Therapy, pp 515–529

    Google Scholar 

  60. Kiranmai M, Kadimcharla K, Keesara NR, Fatima SN, Bommena P et al (2017) Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics. Indian J Pharm Sci 79:695–700

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and supervision, S.N. and H.A.; Methodology, S.N., H.A., R.R.Z., S.A.A., and A.S.; Validation, S.N., H.A., S.A.A., and M.R.S.; Formal analysis, S.N., H.A., S.A.A., and A.S.; Resources, S.N., H.A., R.R.Z., S.A.A., and M.R.S.; Data curation, S.N., H.A., S.A.A., and A.S.; Writing—original draft preparation, S.N., H.A., and A.S.; Writing—review and editing, S.N., H.A., and S.A.A.

Corresponding author

Correspondence to Syeda Sumra Naqvi.

Ethics declarations

Consent to Participate

Informed consent was obtained from all authors.

Consent for Publication

The work explained has not been published earlier. The work is not under consideration for publication elsewhere. Its publication has been approved by all co-authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqvi, S.S., Anwer, H., Siddiqui, A. et al. Novel Synthesis of Maltol Capped Copper Nanoparticles and Their Synergistic Antibacterial Activity with Antibiotics. Plasmonics 16, 1915–1928 (2021). https://doi.org/10.1007/s11468-021-01452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01452-3

Keywords

Navigation