Skip to main content
Log in

Hybrid Toroidal Resonance Response in Planar Core-Shell THz Metasurfaces

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Toroidal resonance of planar structure is feasible and interesting for many appealing applications. We numerically and experimentally investigated the toroidal resonances in a planar metamaterial comprising core-shell structures and its constituent core and shell components at THz frequencies. The investigated structure demonstrated sharp toroidal and hybrid toroidal resonance modes in 0.2–0.3 THz range. Our analysis showed that these modes could be explained by the interaction of resonance toroidal modes of the shell and core components. The response of the investigated planar core-shell toroidal metasurface is notably geometry dependent and can be easily tuned by tailoring the device geometry. Presented work can be used for advanced THz photonics applications, including precise bio-sensing, narrow-band filters, fast-switching, and modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

All datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Maier S (2005) Plasmonics - towards subwavelength optical devices. Curr Nanosci 1(1):17–22. https://doi.org/10.2174/1573413052953165

    Article  CAS  Google Scholar 

  2. Yao K, Liu Y (2014) Plasmonic metamaterials Walter de Gruyter GmbH. Nano Rev. 3(2):177–210. https://doi.org/10.1515/ntrev-2012-0071

  3. Naik GV, Boltasseva A (2011) A comparative study of semiconductor-based plasmonic metamaterials. Metamaterials 5(1):1–7. https://doi.org/10.1016/j.metmat.2010.11.001

    Article  CAS  Google Scholar 

  4. Singamaneni S et al (2009) Nondestructive in situ identification of crystal orientation of anisotropic zno nanostructures. ACS Nano 3(9):2593–2600. https://doi.org/10.1021/nn900687g

    Article  CAS  PubMed  Google Scholar 

  5. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. AAAS. 331(6015)290–291. https://doi.org/10.1126/science.1198258

  6. Smolyaninov II, Elliott J, Zayats AV, Davis CC (2005) Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys Rev Lett 94(5):057401. https://doi.org/10.1103/PhysRevLett.94.057401

    Article  CAS  PubMed  Google Scholar 

  7. Grigorenko AN et al (2005) Nanofabricated media with negative permeability at visible frequencies. Nature 438(7066):335–338. https://doi.org/10.1038/nature04242

    Article  CAS  PubMed  Google Scholar 

  8. Dolling G, Wegener M, Soukoulis CM, Linden S (2007) Negative-index metamaterial at 780 nm wavelength. Opt Lett 32(1):53. https://doi.org/10.1364/ol.32.000053

    Article  CAS  PubMed  Google Scholar 

  9. Kravets VG et al (2013) Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat Mater 12(4):304–309. https://doi.org/10.1038/nmat3537

    Article  CAS  PubMed  Google Scholar 

  10. Lee YY, Kim RM, Im SW, Balamurugan M, Nam KT (2020) Plasmonic metamaterials for chiral sensing applications Nanoscale. Royal Soc Chem 12(1):58–66. https://doi.org/10.1039/c9nr08433a

  11. Yakovlev VV et al (2013) Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials. Adv Mater 25(16):2351–2356. https://doi.org/10.1002/adma.201300314

    Article  CAS  PubMed  Google Scholar 

  12. Hajian H, Ghobadi A, Butun B, Ozbay E (2019) Active metamaterial nearly perfect light absorbers: a review [Invited]. J Opt Soc Am B 36(8):F131. https://doi.org/10.1364/josab.36.00f131

    Article  CAS  Google Scholar 

  13. Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce JM, Güney DO (2014) Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Sci Rep 4(1):1–13. https://doi.org/10.1038/srep04901

    Article  CAS  Google Scholar 

  14. Ou JY, Plum E, Zhang J, Zheludev NI (2013) An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat Nanotechnol 8(4):252–255. https://doi.org/10.1038/nnano.2013.25

    Article  CAS  PubMed  Google Scholar 

  15. Kuzyk A, Schreiber R, Zhang H, Govorov AO, Liedl T, Liu N (2014) Reconfigurable 3D plasmonic metamolecules. Nat Mater 13(9):862–866. https://doi.org/10.1038/nmat4031

    Article  CAS  PubMed  Google Scholar 

  16. Papasimakis N, Fedotov VA, Savinov V, Raybould TA, Zheludev NI (2016) Electromagnetic toroidal excitations in matter and free space. Nat Mater 15(3):263–271. https://doi.org/10.1038/nmat4563

    Article  CAS  PubMed  Google Scholar 

  17. Kaelberer T, Fedotov VA, Papasimakis N, Tsai DP, Zheludev NI (2010) Toroidal dipolar response in a metamaterial. Science 330(6010):1510–1512. https://doi.org/10.1126/science.1197172

  18. Gupta M et al (2016) Sharp toroidal resonances in planar terahertz metasurfaces. Adv Mater 28(37):8206–8211. https://doi.org/10.1002/adma.201601611

    Article  CAS  PubMed  Google Scholar 

  19. Gerislioglu B, Ahmadivand A, Pala N (2018) Tunable plasmonic toroidal terahertz metamodulator. Phys Rev B 97(16):161405. https://doi.org/10.1103/PhysRevB.97.161405

    Article  CAS  Google Scholar 

  20. Nanni EA, Jawla SK, Shapiro MA, Woskov PP, Temkin RJ (2012) Low-loss transmission lines for high-power terahertz radiation. J Infrared, Millimeter, Terahertz Waves 33(7):695–714. https://doi.org/10.1007/s10762-012-9870-5

    Article  Google Scholar 

  21. Huang YW, Chen WT, Wu PC, Fedotov VA, Zheludev NI, Tsai DP (2013) Toroidal lasing spaser. Sci Rep 3(1):1–4. https://doi.org/10.1038/srep01237

    Article  CAS  Google Scholar 

  22. Huang Y-W et al (2012) Design of plasmonic toroidal metamaterials at optical frequencies. Opt Express 20(2):1760. https://doi.org/10.1364/oe.20.001760

    Article  PubMed  Google Scholar 

  23. Han S, Gupta M, Cong L, Srivastava YK, Singh R (2017) Toroidal and magnetic Fano resonances in planar THz metamaterials. J Appl Phys 122(11):113105. https://doi.org/10.1063/1.5001246

    Article  CAS  Google Scholar 

  24. Gupta M, Singh R (2016) Toroidal versus Fano resonances in high Q planar THz metamaterials. Adv Opt Mater 4(12):2119–2125. https://doi.org/10.1002/adom.201600553

    Article  CAS  Google Scholar 

  25. Ahmadivand A, Gerislioglu B (2017) Large-modulation-depth polarization-sensitive plasmonic toroidal terahertz metamaterial. IEEE Photonics Technol Lett 29(21):1860–1863. https://doi.org/10.1109/LPT.2017.2754339

    Article  CAS  Google Scholar 

  26. Wu PC et al (2014) Three-dimensional metamaterials: from split ring resonator to toroidal metamolecule in Plasmonics. Metallic Nano Opt Prop XII 9163:91630. https://doi.org/10.1117/12.2061340

  27. Dong Z et al (2018) Optical toroidal dipolar response by an asymmetric double-bar metamaterial Optical toroidal dipolar response by an asymmetric double-bar metamaterial. 144105:1–517. https://doi.org/10.1063/1.4757613

  28. Zhang Q, Xiao JJ, Wang SL (2014) Optical characteristics associated with magnetic resonance in toroidal metamaterials of vertically coupled plasmonic nanodisks. J Opt Soc Am B 31(5):1103. https://doi.org/10.1364/josab.31.001103

    Article  CAS  Google Scholar 

  29. Li J, Zhang Y, Jin R, Wang Q, Chen Q, Dong Z (2014) Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection. Opt Lett 39(23):6683. https://doi.org/10.1364/ol.39.006683

    Article  PubMed  Google Scholar 

  30. Liu W, Zhang J, Miroshnichenko AE (2015) Toroidal dipole-induced transparency in core-shell nanoparticles. Laser Photon Rev 9(5):564–570. https://doi.org/10.1002/lpor.201500102

    Article  CAS  Google Scholar 

  31. Ögüt B, Talebi N, Vogelgesang R, Sigle W, Van Aken PA (2012) Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett 12(10):5239–5244. https://doi.org/10.1021/nl302418n

    Article  CAS  PubMed  Google Scholar 

  32. Liu W, Zhang J, Lei B, Hu H, Miroshnichenko AE (2015) Invisible nanowires with interfering electric and toroidal dipoles. Opt Lett 40(10):2293. https://doi.org/10.1364/ol.40.002293

    Article  PubMed  Google Scholar 

  33. Akter N, Karabiyik M, Pala N (2018) Hybrid Toroidal Modes in Planar Core-Shell Metamaterial Structures. https://doi.org/10.1109/IPCon.2018.8527265

  34. Gupta M, Srivastava YK, Singh R (2018) A toroidal metamaterial switch. Adv Mater 30(4):1704845. https://doi.org/10.1002/adma.201704845

    Article  CAS  Google Scholar 

  35. Ahmadivand A et al (2017) Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal Metasensors. ACS Sensors 2(9):1359–1368. https://doi.org/10.1021/acssensors.7b00478

    Article  CAS  PubMed  Google Scholar 

  36. Rogalin VE, Kaplunov IA, Kropotov GI (2018) Optical materials for the THz range. Opt Spectrosc 125(6):1053–1064. https://doi.org/10.1134/S0030400X18120172

    Article  CAS  Google Scholar 

  37. Ordal MA, Bell RJ, Alexander RW, Long LL, Querry MR (1987) Optical properties of Au, Ni, and Pb at submillimeter wavelengths. Appl Opt 26(4):744. https://doi.org/10.1364/ao.26.000744

    Article  CAS  PubMed  Google Scholar 

  38. Ahmadivand A et al (2018) Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells. Biomed Opt Express 9(2):373. https://doi.org/10.1364/boe.9.000373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Fan W (2017) Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance. Opt Lett 42(10):2034. https://doi.org/10.1364/ol.42.002034

    Article  CAS  PubMed  Google Scholar 

  40. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 302(5644):419–422. https://doi.org/10.1126/science.1089171

Download references

Funding

This work was partially supported by the Army Research Laboratory Multiscale Multidisciplinary Modeling of Electronic Materials Collaborative Research Alliance under Grant W911NF-12-2-0023.

Author information

Authors and Affiliations

Authors

Contributions

Naznin Akter was responsible for writing the manuscript, simulation data acquisition, and data analysis. Adam Legacy and Fahmida Alam contributed to the overall experimental and simulated data acquisition process. Nezih Pala was responsible for the overall planning of the study, final manuscript proofreading, and correcting. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Naznin Akter.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akter, N., Legacy, A., Alam, F. et al. Hybrid Toroidal Resonance Response in Planar Core-Shell THz Metasurfaces. Plasmonics 16, 1657–1663 (2021). https://doi.org/10.1007/s11468-021-01427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01427-4

Keywords

Navigation