Skip to main content
Log in

Pairwise and Bipartite Entanglements of Three Non-Equally Separated Quantum Dots in Plasmonic Nanowaveguide System

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We theoretically investigate properties of the pairwise and bipartite entanglements of three non-equally separated quantum dots (QDs) coupled to one-dimensional plasmonic nanowaveguide by means of the concurrence as a measure of entanglement. High concurrences of pairwise and bipartite entangled states for three QDs are obtained in wide range of the separation distances between the QDs. Moreover, the switching of maximally entangled state and unentangled state can be achieved by properly modulating the frequency detuning of the QDs from the plasmon field and the separation distances between the QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Masanes L, Pironio S, Acin A (2011) Secure device-independent quantum key distribution with causally independent measurement devices. Nature Commun 2:238

    Article  Google Scholar 

  2. Epping M, Kampermann H, Macchiavello C, Bruß D (2017) Multi-partite entanglement can speed up quantum key distribution in networks. New J Phys 19:093012

    Article  Google Scholar 

  3. Nielsen MA, Chuang IL (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

    Google Scholar 

  4. Petta JR, Johnson AC, Taylor JM, Laird EA, Yacoby A, Lukin MD, Marcus CM, Hanson MP, Gossard AC (2005) Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309:2180

    Article  CAS  Google Scholar 

  5. Akopian N, Lindner NH, Poem E, Berlatzky Y, Avron J, Gershoni D, Gerardot BD, Petroff PM (2006) Entangled photon pairs from semiconductor quantum dots. Phys Rev Lett 96:130501

    Article  CAS  Google Scholar 

  6. Togan E, Chu Y, Trifonov AS, Jiang L, Maze J, Childress L, Dutt MVG, Sørensen AS, Hemmer PR, Zibrov AS, Lukin MD (2010) Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466:730

    Article  CAS  Google Scholar 

  7. Bernien H, Hensen B, Pfaff W, Koolstra G, Blok MS, Robledo L, Taminiau TH, Markham M, Twitchen DJ, Childress L, Hanson R (2013) Heralded entanglement between solid-state qubits separated by three metres. Nature 497:86

    Article  CAS  Google Scholar 

  8. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer

  9. Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2006) Quantum optics with surface plasmons. Phys Rev Lett 97:053002

    Article  CAS  Google Scholar 

  10. Shen JT, Fan S (2009) Theory of single-photon transport in a single-mode waveguide. i. coupling to a cavity containing a two-level atom. Phys Rev A 79(2):023837

  11. Fan S, Kocabaş ŞE, Shen J-T (2010) Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys Rev A 82(6):063821

    Article  Google Scholar 

  12. Caneva T, Manzoni MT, Shi T, Douglas JS, Cirac JI, Chang DE (2015) Quantum dynamics of propagating photons with strong interactions: a generalized input-output formalism. New J Phys 17(11):113001

    Article  Google Scholar 

  13. Gonzalez-Ballestero C, Gonzalez-Tudela A, Garcia-Vidal FJ, Moreno E (2015) Chiral route to spontaneous entanglement generation. Phys Rev B 92(15):155304

    Article  Google Scholar 

  14. Shi T, Chang DE, Cirac JI (2015) Multiphoton-scattering theory and generalized master equations. Phys Rev A 92(5):053834

    Article  Google Scholar 

  15. Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal FJ (2011) Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys Rev Lett 106:020501

    Article  CAS  Google Scholar 

  16. Gonzalez-Ballestero C, Moreno E, Garcia-Vidal FJ (2014) Generation, manipulation, and detection of two-qubit entanglement in waveguide QED. Phys Rev A 89:042328

  17. Chen G-Y, Lambert N, Chou C-H, Chen Y-N, Nori F (2011) Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement. Phys Rev B 84:045310

    Article  Google Scholar 

  18. Jin XR, Sun L, Yang X, Gao J (2013) Quantum entanglement in plasmonic waveguides with near-zero mode indices. Opt Lett 38:4078

    Article  CAS  Google Scholar 

  19. Qiu DX, Bai R, Zhang C, Xin LF, Zou XY, Zhang YQ, Jin XR, An C, Zhang S (2018) Unidirectional reflectionlessness in a non-Hermitian quantum system of surface plasmon coupled to two plasmonic cavities. Quantum Inf Process. https://doi.org/10.1007/s11128-018-2139-8

  20. Ko M-C, Kim N-C, Ryom J-S, Ri S-R, Li J-B (2019) Entanglement of two distant quantum dots with the flip-flop interaction coupled to plasmonic waveguide. Int J Mod Phys B 33(21):1950235

    Article  Google Scholar 

  21. Mirza IM, Schotland JC (2016) Multi-qubit entanglement in bidirectional-chiral-waveguide QED. Phys Rev A 94(1):012302

    Article  Google Scholar 

  22. Wootters WK (1998) Entanglement of formation of an arbitrary state of two qubits. Phys Rev Lett 80:2245

    Article  CAS  Google Scholar 

  23. Horodecki R, Horodecki P, Horodecki M, Horodecki K (2009) Quantum entanglement. Rev Mod Phys 81:865

    Article  CAS  Google Scholar 

  24. Shen J-T, Fan S (2005) Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt Lett 30:2001

    Article  CAS  Google Scholar 

  25. Khajavikhan M, Simic A, Katz M, Lee JH, Slutsky B, Mizrahi A, Lomakin V, Fainman Y (2012) Thresholdless nanoscale coaxial lasers. Nature 482:204–207

    Article  CAS  Google Scholar 

  26. Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD (2007) Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450:402–406

    Article  CAS  Google Scholar 

  27. Coffman V, Kundu J, Wootters WK (2000) Distributed entanglement. Phys Rev A 61:052306

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Program on Key Science Research of Democratic People’s Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

All authors have the same contributions.

Corresponding author

Correspondence to Nam-Chol Kim.

Ethics declarations

Availability of data

All the references cited are available.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryom, JS., Ko, MC., Kim, NC. et al. Pairwise and Bipartite Entanglements of Three Non-Equally Separated Quantum Dots in Plasmonic Nanowaveguide System. Plasmonics 16, 1577–1582 (2021). https://doi.org/10.1007/s11468-021-01406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01406-9

Keywords

Navigation