Skip to main content

Advertisement

Log in

A Tunable Slow Light Device with Multiple Channels Based on Plasmon-Induced Transparency

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Slow light devices with buffering capability play a critical role in all-optical signal processing. In this paper, multiple slow light phenomena are implemented based on plasmon-induced transparency (PIT) in our device. The device mainly consists of dual tooth cavities coupled with stub resonators, respectively. Temporal coupled-mode theory model illustrates that the triple PIT phenomena can be achieved based on different formation mechanisms. The simulation results calculated by the finite-difference time-domain method reveal that significant slow light response occurs at two wavelength regions. In addition, the parameters of structure have an important influence on PIT response and slow light characteristics. Moreover, the separate manipulation of wavelength, transmission and group index at transparency peak can be achieved in different slow light channels by adjusting the structural parameters. This plasmonic device is of great significance for the design of optical networks on chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Ye J, Wang F, Liang R, Wei Z, Meng H, Zhong J, Jiang L (2016) Plasmon induced transparency in loop-stub resonator-coupled waveguide systems. Opt Commun 370:36–42

    Article  CAS  Google Scholar 

  2. Wang G, Zhang W, Gong Y, Liang J (2015) Tunable slow light based on plasmon-induced transparency in dual-stub-coupled waveguide. IEEE Photonics Technol Lett 27(1):89–92

    Article  CAS  Google Scholar 

  3. Zafar R, Salim M (2015) Achievement of large normalized delay bandwidth product by exciting electromagnetic-induced transparency in plasmonic waveguide. IEEE J Quantum Electron 51(10):7200306

    Article  Google Scholar 

  4. Li X, Xie R, Li W, Li Z, Gu E, Niu L, Guo S (2019) Adjustable electromagnetically induced transparency effect based on graphene surface plasmon. Superlattices Microstruct 128:342–348

    Article  CAS  Google Scholar 

  5. Wang Q, Meng H, Huang B, Wang H, Zhang X, Yu W, Tan C, Huang X, Li S (2016) Dual coupled-resonator system for plasmon-induced transparency and slow light effect. Opt Commun 380:95–100

    Article  CAS  Google Scholar 

  6. Lu H, Liu X, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85(5):053803

    Article  Google Scholar 

  7. Liu D, Sun S, Yin X, Sun B, Sun J, Liu Y, Li W, Zhu N, Li M (2019) Large-capacity and low-loss integrated optical buffer. Opt Express 27(8):11585–11593

    Article  CAS  Google Scholar 

  8. Liu W, Romeira B, Li M, Guzzon RS, Norberg EJ, Parker JS, Coldren LA, Yao JP (2016) A wavelength tunable optical buffer based on self-pulsation in an active microring resonator. J Lightwave Technol 34(14):3466–3472

    Article  CAS  Google Scholar 

  9. Zhou L, Wang X, Lu L, Chen J (2018) Integrated optical delay lines: a review and perspective. Chin Opt Lett 16(10):101301

    Article  Google Scholar 

  10. Wheeler NV, Light PS, Couny F, Benabid F (2010) Slow and superluminal light pulses via EIT in a 20-m acetylene-filled photonic microcell. J Lightwave Technol 28(6):870–875

    Article  CAS  Google Scholar 

  11. Lukin MD, Imamoglu A (2001) Controlling photons using electromagnetically induced transparency. Nature 413(6853):273–276

    Article  CAS  Google Scholar 

  12. Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen HT, Taylor AJ, Han J, Zhang W (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151

    Article  Google Scholar 

  13. Shi X, Su X, Yang Y (2015) Enhanced tunability of plasmon induced transparency in graphene strips. J Appl Phys 117(14):143101

    Article  Google Scholar 

  14. Chai Z, Hu X, Zhu Y, Sun S, Yang H, Gong Q (2014) Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity. Adv Opt Mater 2(4):320–325

    Article  CAS  Google Scholar 

  15. Yao G, Ling F, Yue J, Luo Q, Yao J (2016) Dynamically tunable graphene plasmon-induced transparency in the terahertz region. J Lightwave Technol 34(16):3937–3942

    CAS  Google Scholar 

  16. Xie Y, Ye Y, Liu Y, Wang S, Zhang J, Liu Y (2018) Synchronous slow and fast light based on plasmon-induced transparency and absorption in dual hexagonal ring resonators. IEEE Trans Nanotechnol 17(3):552–558

    Article  CAS  Google Scholar 

  17. Zhang ZD, Wang RB, Zhang ZY, Tang J, Zhang WD, Xue CY, Yan SB (2017) Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12(4):1007–1013

    Article  CAS  Google Scholar 

  18. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  19. Armaghani S, Khani S, Danaie M (2019) Design of all-optical graphene switches based on a mach-zehnder interferometer employing optical kerr effect. Superlattices Microstruct 135:106244

    Article  CAS  Google Scholar 

  20. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  21. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445(7123):39–46

    Article  CAS  Google Scholar 

  22. Zhan S, Li H, Cao G, He Z, Li B, Yang H (2014) Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J Phys D: Appl Phys 47(20):205101

    Article  Google Scholar 

  23. Huang B, Meng H, Wang Q, Wang H, Zhang X, Yu W, Tan C, Huang X, Wang F (2016) Plasmonic-induced transparency and slow-light effect based on stub waveguide with nanodisk resonator. Plasmonics 11(2):543–550

    Article  CAS  Google Scholar 

  24. Yun B, Hu G, Cong J, Cui Y (2014) Plasmon induced transparency in metal-insulator-metal waveguide by a stub coupled with F-P resonator. Mater Res Express 1(3):036201

    Article  CAS  Google Scholar 

  25. Zhang Z, Yang J, He X, Han Y, Zhang J, Huang J, Chen D, Xu S (2018) Plasmon-induced transparency based on aperture-coupled cascade resonators without gap. Superlattices Microstruct 123:138–143

    Article  CAS  Google Scholar 

  26. Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90(18):181102

    Article  Google Scholar 

  27. Rakhshani MR, Mansouri-Birjandi MA (2017) High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens Actuators B 249:168–176

    Article  CAS  Google Scholar 

  28. Zhai X, Wang L, Wang LL, Li XF, Huang WQ, Wen SC, Fan DY (2013) Tuning bandgap of a double-tooth-shaped MIM waveguide filter by control widths of the teeth. J Opt 15(5):055008

    Article  CAS  Google Scholar 

  29. Wang G, Lu H, Liu X, Mao D, Duan L (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt Express 19(4):3513–3518

    Article  CAS  Google Scholar 

  30. Han Z, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19(4):3251–3257

    Article  CAS  Google Scholar 

  31. Wang Y, Xie Y, Ye Y, Du Y, Liu B, Zheng W, Liu Y (2018) Exploring a novel approach to manipulating plasmon-induced transparency. Opt Commun 427:505–510

    Article  CAS  Google Scholar 

  32. Feng Y, Liu Y, Wang X, Dong D, Shi Y, Hua S, Zhang H, Tang L (2016) Compact nanofilters based on plasmonics waveguide with archimedes’ spiral nanostructure. IEEE Photonics J 8(5):4802908

    Article  Google Scholar 

  33. Lu H, Liu X, Gong Y, Mao D, Wang G (2011) Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides. J Opt Soc Amer B 28(7):1616–1621

    Article  CAS  Google Scholar 

  34. Lu H, Liu X, Wang G, Mao D (2012) Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnol 23(44):444003

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Chongqing City under Grant cstc2016jcyjA0581, by the Postdoctoral Science Foundation of China under Grant 2016M590875, by the Fundamental Research Funds for the Central Universities under Grant XDJK2018B012.

Author information

Authors and Affiliations

Authors

Contributions

Yiyuan Xie contributed to conceptualization, supervision and writing—review. Junxiong Chai provided methodology and software and performed writing—original draft, and writing—editing. Yichen Ye, Tingting Song, Bocheng Liu, Liangyi Zhang, Yunchao Zhu and Yong Liu performed writing—review.

Corresponding author

Correspondence to Yiyuan Xie.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

Informed consent was obtained from all participants.

Consent to Publish

Informed consent for publication was obtained from all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Chai, J., Ye, Y. et al. A Tunable Slow Light Device with Multiple Channels Based on Plasmon-Induced Transparency. Plasmonics 16, 1809–1816 (2021). https://doi.org/10.1007/s11468-020-01367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01367-5

Keywords

Navigation