Skip to main content
Log in

Sensitivity Enhancement of SPR Sensor with the Black Phosphorus and Graphene with Bi-layer of Gold for Chemical Sensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) based sensor has a great role in sensing applications in terms of real-time monitoring, label-free detection and repeatable measurements. Chemical produced in fruits during food adulteration is injurious to the health; hence, SPR sensors play a very important role in detecting these chemicals. In the present study, two-dimensional (2D) materials-based, such as graphene and black phosphorus (BP), optimized structure of the SPR-based chemical sensor with the increased sensitivity and better figure of merit (FOM) has been proposed. The finite element method (FEM) with the help of COMSOL Multiphysics software has been used for theoretical analysis. BK7 prism is coated with a bilayer of gold as plasmon active material, followed by black phosphorus (BP) and graphene, which works to enhance the evanescent field and also increase the performance of the sensor. The maximum sensitivity of the proposed optimized structure has been found 218 Degree/RIU for the \(5\times 10^{-3}\) index variation at the wavelength of 633 nm. The results obtained from the proposed structure show that the sensor can enhance the sensitivity for aqueous solution of the chemicals having the refractive index from 1.33 RIU to 1.36 RIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216(4):398–410

    Article  CAS  Google Scholar 

  2. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12):2135–2136

    Article  CAS  Google Scholar 

  3. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sensors and Actuators B: Chemical 54(1–2):3–15

    Article  CAS  Google Scholar 

  4. H. Raether (1988) Surface plasmons on smooth surfaces, in Surface plasmons on smooth and rough surfaces and on gratings. Springer, pp. 4–39

  5. Verma R, Gupta BD, Jha R (2011) Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens Actuators B Chem. 160(1):623–631

    Article  CAS  Google Scholar 

  6. Ouyang Q, Zeng S, Jiang L, Hong L, Xu G, Dinh X-Q, Qian J, He S, Qu J, Coquet P et al (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci Rep. 6:28190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ouyang Q, Zeng S, Dinh XQ, Coquet P, Yong KT (2016) Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. 8th International Conference on Materials for Advanced Technologies 140:134–139

  8. Shushama KN, Rana MM, Inum R, Hossain MB (2017) Sensitivity enhancement of graphene coated surface plasmon resonance biosensor. Opt Quantum Electron

  9. Wu L, You Q, Shan Y, Gan S, Zhao Y, Dai X, Xiang Y (2018) Few-layer Ti3C2Tx mxene: A promising surface plasmon resonance biosensing material to enhance the sen- sitivity. Sens Actuators B Chem. 277:210–215

    Article  CAS  Google Scholar 

  10. Zhao X, Huang T, Ping PS, Wu X, Huang P, Pan J, Wu Y, Cheng Z (2018) Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 18(7):2056

    Article  PubMed Central  CAS  Google Scholar 

  11. Xia G, Zhou C, Jin S, Huang C, Xing J, Liu Z (2019) Sensitivity enhancement of two-dimensional materials based on genetic optimization in surface plasmon resonance. Sensors 19(5):1198

    Article  CAS  PubMed Central  Google Scholar 

  12. Xu Y, Ang YS, Wu L, Ang LK (2019) High sensitivity surface plasmon resonance sensor based on two-dimensional mxene and transition metal dichalcogenide: A theoretical study. Nanomaterials 9(2):165

    Article  PubMed Central  CAS  Google Scholar 

  13. AlaguVibisha G, Nayak JK, Maheswari P, Priyadharsini N, Nisha A, Jaroszewicz Z, Rajesh K, Jha R (2020) Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2d materials over bimetallic layer of cu-ni. Opt Commun. 463:125337

    Article  CAS  Google Scholar 

  14. Li J, Chen Z, Yang H, Yi Z, Chen X, Yao W, Duan T, Wu P, Li G, Yi Y (2020) Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using au nanocubes. Nanomaterials 10(2):257

    Article  CAS  PubMed Central  Google Scholar 

  15. Wang Y, Chen Z, Xu D, Yi Z, Chen X, Chen J, Tang Y, Wu P, Li G, Yi Y (2020) Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays. Results in Phys 16:102951

    Article  Google Scholar 

  16. Pan M, Su Z, Yu Z, Wu P, Jile H, Yi Z, Chen Z (2020) A narrowband perfect absorber with high q-factor and its application in sensing in the visible region. Results in Phys p. 103415

  17. Chu P, Chen J, Xiong Z, Yi Z (2020) Controllable frequency conversion in the coupled time-modulated cavities with phase delay. Opt Commun

  18. Koppens FH, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: A platform for strong light-matter interactions. Nano letters 11(8):3370–3377

    Article  CAS  PubMed  Google Scholar 

  19. Castellanos-Gomez A (2015) Black phosphorus: Narrow gap, wide applications. J Phys Chem Lett. 6(21):4280–4291

    Article  CAS  PubMed  Google Scholar 

  20. Cho S-Y, Lee Y, Koh H-J, Jung H, Kim J-S, Yoo H-W, Kim J, Jung H-T (2016) Superior chemical sensing performance of black phosphorus: Comparison with mos2 and graphene. Adv Mater. 28(32):7020–7028

    Article  CAS  PubMed  Google Scholar 

  21. Mao N, Tang J, Xie L, Wu J, Han B, Lin J, Deng S, Ji W, Xu H, Liu K et al (2015) Optical anisotropy of black phosphorus in the visible regime. J Am Chem Soc. 138(1):300–305

    Article  PubMed  CAS  Google Scholar 

  22. Pumera M (2017) Phosphorene and black phosphorus for sensing and biosensing. TrAC Trends in Analytical Chemistry 93:1–6

    Article  CAS  Google Scholar 

  23. Singh Y, Raghuwanshi SK (2019) Sensitivity enhancement of the surface plasmon resonance gas sensor with black phosphorus. IEEE Sensors Letters 3(12):1–4

    Article  CAS  Google Scholar 

  24. Cen C, Chen Z, Xu D, Jiang L, Chen X, Yi Z, Wu P, Li G, Yi Y (2020) High quality factor, high sensitivity metamaterial graphene-perfect absorber based on critical coupling theory and impedance matching. Nanomaterials 10(1):95

    Article  CAS  PubMed Central  Google Scholar 

  25. Singh Y, Sadhu A, Raghuwanshi SK (2020) Fabrication and experimental analysis of reduced graphene oxide coated etched fiber bragg grating refractometric sensor. IEEE Sensors Letters 4(7):1–4

    Google Scholar 

  26. Cen C, Zhang Y, Chen X, Yang H, Yi Z, Yao W, Tang Y, Yi Y, Wang J, Wu P (2020) A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency. Physica E: Low-dimensional Systems and Nanostructures 117:113840

    Article  CAS  Google Scholar 

  27. Mishra AK, Mishra SK, Verma RK (2015) An spr-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. J Phys D Appl Phys. 48(43):435502

    Article  CAS  Google Scholar 

  28. Lin Z, Jiang L, Wu L, Guo J, Dai X, Xiang Y, Fan D (2016) Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered au-mos 2-au films. IEEE Photonics Journal 8(6):1–8

    Article  Google Scholar 

  29. Srivastava T, Jha R (2018) Black phosphorus: A new platform for gaseous sensing based on surface plasmon resonance. IEEE Photonics Technol Lett. 30(4):319–322

    Article  CAS  Google Scholar 

  30. Sharma AK, Dominic A (2018) Influence of chemical potential on graphene-based spr sensor’s performance. IEEE Photonics Technology Letters 30(1):95–98

    Article  CAS  Google Scholar 

  31. Singh Y, Raghuwanshi SK (2019) Design and analysis of surface-plasmon resonance (SPR) sensor to measure electric field using angle interrogation, in Physics and Simulation of Optoelectronic Devices XXVII, B. Witzigmann, M. Osinski, and Y. Arakawa, Eds., vol. 10912, International Society for Optics and Photonics. SPIE, pp. 180 – 185. [Online]. Available: https://doi.org/10.1117/12.2507234

  32. Lin Z, Jia Y, Ma Q, Wu L, Ruan B, Zhu J, Dai X, Xiang Y (2017) High sensitivity intensity-interrogated bloch surface wave biosensor with graphene. IEEE Sensors Journal 18(1):106–110

    Article  Google Scholar 

  33. Luo Z, Huang Y (2018) Sensitivity enhancement of surface plasmon resonance sensor based on wavelength and angular combined modulations. Optik 168:271–277

    Article  CAS  Google Scholar 

  34. Rahman MS, Anower MS, Bashar LB, Rikta KA (2017) Sensitivity analysis of graphene coated surface plasmon resonance biosensors for biosensing applications. Sens Biosensing Res. 16:41–45

    Article  Google Scholar 

  35. Zhao Y, Deng Z-Q, Li J (2014) Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens Actuators B Chem. 202:557–567

    Article  CAS  Google Scholar 

  36. Filion-Cote S, Tabrizian M, Kirk AG (2017) Real-time measurement of complex refractive indices with surface plasmon resonance. Sens Actuators B Chem. 245:747–752

    Article  CAS  Google Scholar 

  37. Zheng G, Zou X, Chen Y, Xu L, Rao W (2017) Fano resonance in graphene-mos2 heterostructure-based surface plasmon resonance biosensor and its potential applications. Optical Materials 66:171–178

    Article  CAS  Google Scholar 

  38. Wu L, Chu H, Koh W, Li E (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express. 18(14):14395–14400

    Article  CAS  PubMed  Google Scholar 

  39. Verma A, Prakash A, Tripathi R (2015) Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt Quantum Electron. 47(5):1197–1205

    Article  CAS  Google Scholar 

  40. Maharana PK, Jha R, Palei S (2014) Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens Actuators B Chem. 190:494–501

    Article  CAS  Google Scholar 

  41. Kumar Maharana P, Bharadwaj S, Jha R (2013) Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism. J Appl Phys. 114(1):014304

    Article  CAS  Google Scholar 

  42. Maharana PK, Padhy P, Jha R (2013) On the field enhancement and performance of an ultra-stable spr biosensor based on graphene. IEEE Photonics Technol Lett. 25(22):2156–2159

    Article  CAS  Google Scholar 

  43. Shalabney A, Abdulhalim I (2010) Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sensors and Actuators A: Physical 159(1)24–32. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0924424710000683

  44. Ong BH, Yuan X, Tjin SC, Zhang J, Ng HM (2006) Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sensors and Actuators B: Chemical 114(2):1028–1034

    Article  CAS  Google Scholar 

  45. C. Multiphysics (1998) Introduction to comsol multiphysics. COMSOL Multiphysics, Burlington, MA, 9:2018

  46. Prajapati Y, Srivastava A (2019) Effect of bluep/mos2heterostructure and graphene layer on the performance parameter of spr sensor: Theoretical insight. Superlattices and Microstructures

  47. Raghuwanshi SK, Kumar M (2019) Highly dispersion tailored property of novel class of multimode surface plasmon resonance biosensor assisted by teflon and metamaterial layers. IEEE Trans Instrum Meas. 68(8):2954–2963

    Article  CAS  Google Scholar 

  48. Brahmachari K, Ray M (2013) Effect of prism material on design of surface plasmon resonance sensor by admittance loci method. Frontiers of Optoelectronics 6(2):185–193

    Article  Google Scholar 

  49. Zhan T, Shi X, Dai Y, Liu X, Zi J (2013) Transfer matrix method for optics in graphene layers. Journal of Physics: Condensed Matter 25(21):215301

    PubMed  Google Scholar 

  50. Davydov SY, Lebedev A (2014) Evaluation of the effect of adsorption on the conductivity of single-layer graphene formed on a semiconductor substrate. Physics of the Solid State 56(12):2580–2583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the project title “Design and Development of Deployable Thin film based evanescent field sensor to check the quality of food from adulteration” funded by CSIR-Central Scientific Instruments Organisation, Chandigarh, India, with sanction number: 70(0077)/19/EMR-II [CSIR(32)/2019-2020/663/ECE]. The authors would like to thank Dr. Umesh Kumar Tiwari, Dr. Samir K Mondal, Senior Principal Scientist, Advanced Materials & Sensors, Central Scientific Instruments Organisation (CSIO), Dr. Sudipta Sarkar pal, Principal Scientist, Advanced Material and Sensors, CSIR-CSIO Chandigarh and Prof. S. Anantha Ramakrishna, Director, CSIR-Central Scientific Instruments Organisation, Chandigarh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadvendra Singh.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, Y., Paswan, M.K. & Raghuwanshi, S.K. Sensitivity Enhancement of SPR Sensor with the Black Phosphorus and Graphene with Bi-layer of Gold for Chemical Sensing. Plasmonics 16, 1781–1790 (2021). https://doi.org/10.1007/s11468-020-01315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01315-3

Keywords

Navigation