Skip to main content
Log in

Electrically Tunable Terahertz Metamaterial Absorber Comprised Cu/Graphene Strips

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This communication investigates the spectral features of metamaterial-based absorber operating in the terahertz frequency band. Metamaterial-based absorber is comprised of copper (Cu) and graphene strips loaded over a silicon dioxide (SiO2) glass substrate. The absorptivity of the proposed absorber is analyzed by varying the chemical potential of the graphene and the slant angle of Cu strips. The results demonstrate that absorption band can be tuned by varying the chemical potential of graphene and the slant angle of copper strip. Such an absorber would be useful for the terahertz filtering and sensing applications in integrated optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–2000

    Article  CAS  Google Scholar 

  3. Geim AK, Novoselov KS (2010) The rise of graphene. In Nanoscience and Technology: a collection of reviews from nature journals p 11-19

  4. Baqir MA, Choudhury PK (2017) Graphene-based slab waveguide for slow-light propagation and mode filtering. J Electromagn Waves Appl 31:2055–2063

    Article  Google Scholar 

  5. Mishra R, Panwar R, Singh D (2018) Equivalent circuit model for the design of frequency-selective, terahertz-band, graphene-based metamaterial absorbers. IET Microw Antenna Propag 9:1–5

    Google Scholar 

  6. Lee SH, Choi M, Kim T-T, Lee S, Liu M, Yin X, Choi HK et al (2012) Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11:936

    Article  CAS  Google Scholar 

  7. Baqir MA, Choudhury PK, Fatima T, Ibrahim A-BMA (2019) Graphene-over-graphite-based metamaterial structure as optical filter in the visible regime. Optik 180:832–839

    Article  CAS  Google Scholar 

  8. Lemoult F et al (2012) Wave propagation control at the deep subwavelength scale in metamaterials. Nat Phys 9:55–60

    Article  CAS  Google Scholar 

  9. Kadic M, Bückmann T, Schittny R, Wegener M (2013) Metamaterials beyond electromagnetism. Rep Prog Phys 76:126501

    Article  Google Scholar 

  10. Chen F, Yao D, Zhang H, Sun L, Yu C (2019) Tunable plasmonic perfect absorber based on a multilayer graphene strip-grating structure. J Electron Mater 48:5603–5608

    Article  CAS  Google Scholar 

  11. Baqir MA, Choudhury PK (2017) Hyperbolic metamaterial-based UV absorber. IEEE Photon Technol Lett 29:1548–1551

    Article  CAS  Google Scholar 

  12. Shelby R, Smith D, Nemat-Nasser S, Schultz S (2001) Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl Phys Lett 78:489–491

    Article  CAS  Google Scholar 

  13. He X, Yang J, Chen D, Zhang S, Han Y, Zhang Z (2018) Sub-wavenumber linewidth mid-infrared notch filter enabled by a dual-period plasmonic structure. Opt Commun 428:152–156

    Article  CAS  Google Scholar 

  14. Xiao S, Wang T, Liu T, Yan X, Li Z, Xu C (2018) Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 126:271–278

    Article  CAS  Google Scholar 

  15. Wang S, Xia L, Mao H, Jiang X, Yan S, Wang H, Wei D, Cui H-L, Du C (2016) Terahertz biosensing based on a polarization-insensitive metamaterial. IEEE Photon Technol Lett 28:986–989

    CAS  Google Scholar 

  16. Baqir MA, Farmani A, Fatima T, Raza MR, Shoukat SF, Mir A (2018) A nanoscale, tunable and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl Opt 57:9447–9454

    Article  CAS  Google Scholar 

  17. Dong Y, Itoh T (2012) Metamaterial-based antennas. Proc IEEE 100:2271–2285

    Article  CAS  Google Scholar 

  18. Hill EW, Vijayaragahvan A, Novoselov K (2011) Graphene sensors. IEEE Sensors J 11:3161–3170

    Article  CAS  Google Scholar 

  19. Zhang Y, Lin S, Yu S, Liu GJ, Denisov A (2018) Design and analysis of optically controlled pattern reconfigurable planar Yagi–Uda antenna. IET Microwaves Antennas Propag 12:2053–2059

    Article  Google Scholar 

  20. Faruk A, Sabah C (2019) Terahertz metamaterial absorber comprised of H-shaped resonator within split-square ring and its sensory application. Optik 192:162976

  21. Yao Y, Cheng X, Qu SW, Yu Y, Chen X (2016) Graphene-metal based tunable band-pass filters in the terahertz band. IET Microwaves Antennas Propag 10:1570–1575

    Article  Google Scholar 

  22. Banszerus L, Schmitz M, Engels S, Goldsche M, Watanabe K, Taniguchi T, Stampfer C (2016) Ballistic transport exceeding 28 μm in CVD grown graphene. Nano Lett 16:1387–1391

    Article  CAS  Google Scholar 

  23. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  24. Baqir MA, Ghasemi M, Choudhury PK, Majlis BY (2015) Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range. J Electromagn Waves Appl 29:2408–2419

    Article  Google Scholar 

  25. Baqir MA, Choudhury PK, Mughal MJ (2018) Gold nanowires-based hyperbolic metamaterial multiband absorber operating in the visible and near-infrared regimes. Plasmonics 14:1–8

    Google Scholar 

  26. Cai Y, Xu KD (2018) Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure. Opt Express 26:31693–31705

    Article  CAS  Google Scholar 

  27. Baqir MA (2019) Wide-band and wide-angle, visible- and near-infrared metamaterial-based absorber made of nanoholed tungsten thin film. Opt Mater Express 9:2357–2368

    Article  Google Scholar 

  28. Liu T, Zhou C, Jiang X, Cheng L, Xu C, Xiao S (2019) Tunable light trapping and absorption enhancement with graphene-based complementary metasurfaces. Opt Mater Express 9:1469–1478

    Article  CAS  Google Scholar 

  29. Carranza IE, Grant JP, Gough J, Cumming D (2017) Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: scaling to large format focal plane arrays. IEEE J Sel Top Quant Electronics 23:1–8

    Article  Google Scholar 

  30. Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, Yoshimoto N, Terada J, Takahashi H (2013) Terahertz wireless communications based on photonics technologies. Opt Express 21:23736–23747

    Article  Google Scholar 

  31. Chen H-T, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD (2006) Active terahertz metamaterial devices. Nature 444:597–600

    Article  CAS  Google Scholar 

  32. Yang J, Gong C, Sun L, Chen P, Lin L, Liu W (2016) Tunable reflecting terahertz filter based on chirped metamaterial structure. Sci Rep 6:38732

    Article  CAS  Google Scholar 

  33. Zhang F et al (2015) Mechanically stretchable and tunable metamaterial absorber. Appl Phys Lett 106:091907

    Article  CAS  Google Scholar 

  34. Tao J, Huang XG, Lin X, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17:13989–13994

    Article  CAS  Google Scholar 

  35. Hanson GW (2008) Quasi-transverse electromagnetic modes supported by graphene parallel plate waveguide. J Appl Phys 104:084314–1–084314–5

    Article  CAS  Google Scholar 

  36. Vakil W, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294

    Article  CAS  Google Scholar 

Download references

Funding

M.A. Baqir is thankful to the Higher Education Commission (HEC, Pakistan) for providing the grant 21-1811/SRGP/R&D/HEC/2017 toward the support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Baqir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baqir, M.A., Naqvi, S.A. Electrically Tunable Terahertz Metamaterial Absorber Comprised Cu/Graphene Strips. Plasmonics 15, 2205–2211 (2020). https://doi.org/10.1007/s11468-020-01252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01252-1

Keywords

Navigation