Skip to main content
Log in

Highly Sensitive SPR Sensor Based on Ag-ITO-BlueP/TMDCs-Graphene Heterostructure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The novel surface plasmon resonance (SPR) sensor based on hybrid structure of Ag-indium tin oxide (ITO)-blue phosphorene (BlueP)/transition metal dichalcogenides (TMDCs)-graphene is presented. The BlueP/TMDCs heterostructure works as an interacting layer with the analyte for the enhancement of the of the sensor’s sensitivity. For angular sensitivity, when the BlueP/WS2 and graphene are both monolayer, the highest angular sensitivity with 348.8°/RIU is obtained. The maximum angular sensitivity of our proposed SPR sensor is about 2.83 times of the conventional sensor. For phase sensitivity, when the BlueP/WSe2 is monolayer and graphene is bilayer, the highest phase sensitivity with 3.603 × 106 deg/RIU is obtained. The highest phase sensitivity of our proposed SPR sensor is about 2.78 times of the Ag-ITO-graphene structure and 4.16 times of the Ag-ITO structure. The SPR sensor has the advantages of high sensitivity, repeatability, and reusability, so it has a good prospect application for food safety detection, biological engineering, medical diagnosis, and biochemical detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xue TY, Qia K, Hu CQ (2019) Novel SPR sensing platform based on superstructure MoS2 nanosheets for ultrasensitive detection of mercury ion. Sens Actuators B Chem 284:589–594

    CAS  Google Scholar 

  2. Taylor AD, Ladd J, Yu QM, Chen SF, Homola J, Jiang SY (2006) Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron 22(5):752–758

    CAS  PubMed  Google Scholar 

  3. Lautner G, Balogh Z, Bardóczy V, Mészáros T, Gyurcsányi RE (2010) Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst 135(5):918–926

    CAS  PubMed  Google Scholar 

  4. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    CAS  PubMed  Google Scholar 

  5. Raed A, Mehrdad I, Mustafa Y (2019) A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance. Sensors 19(4):862

    Google Scholar 

  6. Kaushik S, Tiwari UK, Deep A, Sinha RK (2019) Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin. SCI REP-UK 9:6987

    Google Scholar 

  7. Yakes BJ, Buijs J, Elliott CT (2016) Surface plasmon resonance biosensing: approaches for screening and characterizing antibodies for food diagnostics. Talanta 156:55–63

    PubMed  Google Scholar 

  8. Kim J, Hong S, Choi Y (2019) Sensitive detection of formaldehyde gas using modified dandelion-like SiO2/Au film and surface plasmon resonance system. J Nanosci Nanotechno 19(8):4807–4811

    CAS  Google Scholar 

  9. Zeng SW, Sreekanth KV, Shang JZ, Yu T, Chen CK, Yin F, Baillargeat D, Coquet P, Ho HP, Kabashin AV, Yong KT (2015) Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv Mater 27(40):6163–6169

    CAS  PubMed  Google Scholar 

  10. Hottin J, Wijaya E, Hay L, Maricot S, Bouazaoui M, Vilcot JP (2013) Comparison of gold and silver/gold bimetallic surface for highly: sensitive near-infrared SPR sensor at 1550 nm. Plasmonics 8(2):619–624

    CAS  Google Scholar 

  11. Ruan B, Qi Y, Zhu JQ, Wu LM, Guo J, Dai XY, Xiang YJ (2018) Improving the performance of an SPR biosensor using long-range surface plasmon of Ga-doped zinc oxide. Sensors 8(7):2098

    Google Scholar 

  12. Chen X, Zheng ZF, Ke XB, Jaatinen E, Xie TF, Wang DJ, Guo C, Zhao JC, Zhu HY (2010) Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem 12(3):414–419

    CAS  Google Scholar 

  13. Han L, Ding HF, Huang TY, Wu X, Chen B, Ren K, Fu S (2018) Broadband optical reflection modulator in indium-tin-oxide-filled hybrid plasmonic waveguide with high modulation depth. Plasmonics 13(4):1309–1314

    CAS  Google Scholar 

  14. Wu L, Guo J, Dai X, Xiang Y, Fan D (2017) Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor. Plasmonics 13(1):281–285

    Google Scholar 

  15. Liu C, Liu QG, Hu XT (2014) SPR phase detection for measuring the thickness of thin metal films. Opt Express 22(7):7574–7580

    CAS  PubMed  Google Scholar 

  16. Saigusa M, Tsuboi K, Konosu Y, Ashizawa M, Tanioka A, Matsumoto H (2015) Highly sensitive local surface plasmon resonance in anisotropic Au nanoparticles deposited on nanofibers. J Nanomater 2015:1–8

    Google Scholar 

  17. Liu Y, Huang CZ (2013) Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles. Nanoscale 5:7458–7466

    CAS  PubMed  Google Scholar 

  18. Chung HY, Chen CC, Wu PC, Tseng ML, Lin WC, Chen CW, Chiang HP (2014) Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensorby using oblique deposited silver nanorods. Nanoscale Res Lett 9:476–480

    PubMed  PubMed Central  Google Scholar 

  19. Su W, Zheng G, Li X (2012) Design of a highly sensitive surface plasmon resonance sensor using aluminum based diffraction grating. Opt Commun 285:4603–4607

    CAS  Google Scholar 

  20. Sang XZ, Zhang DW (2016) Research on the SPR properties of copper thin film with regulation of titanium dioxide. Spectrosc Spectr Anal 36(7):2027–2030

    CAS  Google Scholar 

  21. Leong KH, Gan BL, Ibrahim S, Saravanan P (2014) Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds. Appl Surf Sci 319:128–135

    CAS  Google Scholar 

  22. Usov OA, Nashchekin AV (2009) SPR of Ag nanoparticles in photothermochromic glasses. Proc SPIE-Int Soc Opt Eng 7394:73942J–73942J-6

    Google Scholar 

  23. Kanehara M, Koike H, Yoshinaga T, Teranishi T (2009) Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J Am Chem Soc 131(49):17736–17737

    CAS  PubMed  Google Scholar 

  24. Kakil SA, Sabr BN, Hana LS, Abbas AH, Hussin SY (2018) Effects of a low dose of gamma radiation on the morphology, and the optical and the electrical properties of an ITO thin film as an electrode for solar cell applications. J Korean Phys Soc 72(5):561–569

    CAS  Google Scholar 

  25. Farhan MS, Zalnezhad E, Bushroa AR, Sarhan AAD (2013) Electrical and optical properties of indium-tin oxide (ITO) films by in-assisted deposition (IAD) at room temperature. Int J Precision Eng Manuf 14:1465–1469

    Google Scholar 

  26. Tuo YF, Wu YP, Huang M, Wang K, Huang Y, Zhou ZH, Shen SZ (2015) The surface plasmon resonance absorption of indium tin oxide nanoparticles and its control. Adv Mater Res 1118:160–165

    Google Scholar 

  27. Du J, Chen X, Liu C, Ni J, Hou G, Zhao Y, Zhang X (2014) Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature. Appl Phys A Mater Sci Process 117:815–822

    CAS  Google Scholar 

  28. Li ZQ, He JH, Wang YJ, Feng DD, Gu ED, Li WC (2012) Self-referenced SPR sensor based on Au/ITO Nanocomposite. Acta Photonica Sinica 45(12):1228002-1–1228002-7

    Google Scholar 

  29. Szunerits S, Castel X, Boukherroub R (2008) Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity. J Phys Chem C 112(40):15813–15817

    CAS  Google Scholar 

  30. Gan SM, Menon PS, Mohamad NR, Jamil NA, Majlis BY (2019) FDTD simulation of Kretschmann based Cr-Ag-ITO SPR for refractive index sensor. Materials Today: Proceedings, 7: 668–674

  31. Sharma NK, Yadav S, Sajal V (2014) Theoretical analysis of highly sensitive prism based surface plasmon resonance sensor with indium tin oxide. Opt Commun 318:74–78

    CAS  Google Scholar 

  32. Zeng S, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    CAS  PubMed  Google Scholar 

  33. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  PubMed  Google Scholar 

  34. Subramanian P, Lesniewski A, Kaminska I, Vlandas A, Vasilescu A, Niedziolka-Jonsson J (2013) Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces. Biosens Bioelectron 50:239–243

    CAS  PubMed  Google Scholar 

  35. Simsek E (2013) Improving tuning range and sensitivity of localized SPR sensors with graphene. IEEE Photon Technol Lett 25(9):867–870

    CAS  Google Scholar 

  36. Chiu NF, Huang TY, Lai HC, Liu KC (2014) Graphene oxide-based SPR biosensor chip for immunoassay applications. Nanoscale Res Lett 9:445

    PubMed  PubMed Central  Google Scholar 

  37. Said FA, Menon PS, Rajendran V, Sharri S, Majlis BY (2017) Investigation of graphene-on-metal substrates for SPR-based sensor using finite-difference time domain. Iet Nanobiotechnology 11(8):981–986

    PubMed  PubMed Central  Google Scholar 

  38. Wang QH, Kalantarzadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712

    CAS  PubMed  Google Scholar 

  39. Liu Y, Duan XD, Huang Y, Duan XF (2018) Two-dimensional transistors beyond graphene and TMDCs. Chem Soc Rev 47(16):6388–6409

    CAS  PubMed  Google Scholar 

  40. Ouyang QL, Zeng SW, Dinh XQ, Coquet P, Yong KT (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. SCI REP-UK 6:28190

    CAS  Google Scholar 

  41. Meshginqalam B, Barvestani J (2018) Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sensors J 18(18):7537–7543

    CAS  Google Scholar 

  42. Han L, He XJ, Ge LC, Huang TY, Ding HF, Wu C (2019) Comprehensive study of performance SPR biosensor based on metal-ITO-graphene/TMDCs hybrid multilayer. Plasmonics. https://doi.org/10.1007/s11468-019-01004-w

  43. Wu LM, Guo J, Wang QK, Lu SB, Dai XY, Xiang YJ, Fan DY (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens Actuators B Chem 249:542–548

    CAS  Google Scholar 

  44. Zhao X, Huang TY, Perry SP, Wu X, Huang P, Pan JX, Wu YH, Cheng Z (2018) Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 18(7):2056

    PubMed Central  Google Scholar 

  45. Zeng SW, Hu SY, Xia J, Anderson T, Dinh XQ, Meng XM, Coquet P, Yong KT (2015) Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens Actuators B Chem 207:801–810

    CAS  Google Scholar 

  46. Han L, Zhao X, Huang TY, Ding HF, Wu C (2019) Comprehensive study of phase-sensitive SPR sensor based on metal-ITO hybrid multilayer. Plasmonics 14:1743–1750. https://doi.org/10.1007/s11468-019-00968-z

    Article  CAS  Google Scholar 

  47. Peng Q, Wang Z, Sa B, Wu B, Sun Z (2016) Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci Rep 6:31994

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Srivastava A, Prajapati YK (2019) Performance analysis of silicon and blue phosphorene/MoS2 hetero-structure based SPR sensor. Photonic Sensors 9(3):284–292

    CAS  Google Scholar 

  49. Palik ED (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  50. Gupta BD, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens Actuators B Chem 107:40–46

    CAS  Google Scholar 

  51. Han L, Wu C (2019) A phase-sensitivity-enhanced surface plasmon resonance biosensor based on ITO-graphene hybrid structure. Plasmonics 14(4):901–906

    CAS  Google Scholar 

  52. Sreekanth KV, Zeng S, Yong KT, Yu T (2013) Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal, Sens. Actuators B Chem 182:424–428

    CAS  Google Scholar 

  53. Roy K, Padmanabhan M, Goswami S, Sai TP, Ramalingam G, Raghavan S, Ghosh A (2013) Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotechnol 8:826–830

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by Wuhan Science and Technology Bureau under grant (2018010401011297) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132703, G1323511665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianye Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Ding, H., Landry, N.N.A. et al. Highly Sensitive SPR Sensor Based on Ag-ITO-BlueP/TMDCs-Graphene Heterostructure. Plasmonics 15, 1489–1498 (2020). https://doi.org/10.1007/s11468-020-01165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01165-z

Keywords

Navigation