Skip to main content

Advertisement

Log in

Electrospun PVDF Nanofibers Decorated with Graphene and Titania for Improved Visible Light Photocatalytic Methanation of CO2

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The photoreduction of carbon dioxide (CO2) by a highly efficient Graphene@PVDF(polyvinylidene fluoride)@TiO2(titania) electrospinning film photocatalysis system was explored, achieving an innovative combination of electrospinning and hydrothermal treatment using nanoscale pristine graphene sheets. TiO2 was embedded in PVDF nanowire due to the inducement of element F, while the TiO2 nanoparticles on PVDF facilitated transporting the photo-generated electron-hole pairs to the Ti-F groups, which performed as electron-trapping sites due to the strong electronegativity of fluorine. The possible mechanism of CO2 reduction is depicted involving two distinct functional regions – the production regions (TiO2) and the consumption regions (graphene sheets) of the photo-generated electrons. In this photocatalysis system, the photo-generated electrons are quickly captured and transferred in a timely manner, efficiently suppressing the recombination of photo-generated carriers. The electron reservoirs in the graphene sheets can then accelerate the photoreduction reaction and promote the conversion of CO2 to CH4 (methane), leading to a highly efficient photoreduction of CO2 under visible light illumination, which is a promising material in new energy development, mitigating climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Edit 52:7372–7408

    Article  CAS  Google Scholar 

  2. Srinivas B, Shubhamangala B, Lalitha K, Reddy PAK, Kumari VD, Subrahmanyam M, De BR (2011) Photocatalytic reduction of CO2 over Cu-TiO2/molecular sieve 5A composite. Photochem Photobiol 87:995–1001

    Article  PubMed  CAS  Google Scholar 

  3. Corma A, Garcia H (2013) Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. J Catal 308:168–175

    Article  CAS  Google Scholar 

  4. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13:169–189

    Article  CAS  Google Scholar 

  5. Wang Y, Zhang Y-Y, Tang J, Wu H, Xu M, Peng Z, Gong X-G, Zheng G (2013) Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. Acs Nano 7:9375–9383

    Article  PubMed  CAS  Google Scholar 

  6. Kong L, Jiang Z, Wang C, Wan F, Li Y, Wu L, Zhi J-F, Zhang X, Chen S, Liu Y (2015) Simple ethanol impregnation treatment can enhance photocatalytic activity of TiO2 nanoparticles under visible-light irradiation. ACS Appl Mater Interfaces 7:7752–7758

    Article  PubMed  CAS  Google Scholar 

  7. Fei J, Li J (2015) Controlled preparation of porous TiO2-Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis. Adv Mater 27:314–319

    Article  PubMed  CAS  Google Scholar 

  8. Dong R, Zhang Q, Gao W, Pei A, Ren B (2016) Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 10:839–844

    Article  PubMed  CAS  Google Scholar 

  9. Elangovan E, Sivakumart T, Brindha A, Thannaraiselvi K, Sakthivel K, Kathiravan K, Aishwarya S (2019) Visible active N-doped TiO2/WS2 heterojunction nano rods: synthesis, characterization and photocatalytic activity. J Nanosci Nanotechnol 19:4429–4437

    Article  PubMed  CAS  Google Scholar 

  10. Martinez L, Soler L, Angurell I, Llorca J (2019) Effect of TiO2 nanoshape on the photoproduction of hydrogen from water-ethanol mixtures over Au3Cu/TiO2 prepared with preformed Au-Cu alloy nanoparticles. Appl Catal B-Environ 248:504–514

    Article  CAS  Google Scholar 

  11. Liu J, Xie F, Li R, Li T, Jia Z, Wang Y, Wang Y, Zhang X, Fan C (2019) TiO2-x/Ag3PO4 photocatalyst: oxygen vacancy dependent visible light photocatalytic performance and BPA degradative pathway. Mater Sci Semicon Process 97:1–10

    Article  CAS  Google Scholar 

  12. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  PubMed  CAS  Google Scholar 

  13. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  PubMed  CAS  Google Scholar 

  14. F. Wang, S. Jia, Z. Tang, Y. Wang, Research progress on light-driven technology for graphene-based nanocomposites.

  15. T. Otsuji, S.A.B. Tombet, A. Satou, H. Fukidome, M. Suemitsu, E. Sano, V. Popov, M. Ryzhii, V. Ryzhii (2012), Graphene-based devices in terahertz science and technology, Journal Of Physics D-Applied Physics, 45.

  16. Tan L-L, Chai S-P, Mohamed AR (2012) Synthesis and applications of graphene-based TiO2 photocatalysts. Chemsuschem 5:1868–1882

    Article  PubMed  CAS  Google Scholar 

  17. Li B, Liu T, Wang Y, Wang Z (2012) ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J Colloid Interf Sci 377:114–121

    Article  CAS  Google Scholar 

  18. Tayyebi A, Outokesh M, Tayebi M, Shafikhani A, Sengoer SS (2016) ZnO quantum dots-graphene composites: formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye. J Alloys Compd 663:738–749

    Article  CAS  Google Scholar 

  19. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    Article  PubMed  CAS  Google Scholar 

  20. Zhang J, Xiong Z, Zhao XS (2011) Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640

    Article  CAS  Google Scholar 

  21. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  PubMed  CAS  Google Scholar 

  22. Tan JZY, Zeng J, Kong D, Bian J, Zhang X (2012) Growth of crystallized titania from the cores of amorphous tetrabutyl titanate@PVDF nanowires. J Mater Chem 22:18603–18608

    Article  CAS  Google Scholar 

  23. Ojeda ML, Bizarro M, Campero A (2011) Evaluation of the structural, optical and photocatalytic properties of nitrogen-fluorine co-doped TiO2 thin films. J Sol Gel Sci Technol 60:108–115

    Article  CAS  Google Scholar 

  24. Cheng X, Dong P, Huang Z, Zhang Y, Chen Y, Nie X, Zhang X (2017) Green synthesis of plasmonic Ag nanoparticles anchored TiO2 nanorod arrays using cold plasma for visible-light-driven photocatalytic reduction of CO2. J Co2 Util 20:200–207

    Article  CAS  Google Scholar 

  25. Yu J, Dai G, Cheng B (2010) Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films. J Phys Chem C 114:19378–19385

    Article  CAS  Google Scholar 

  26. Lv K, Cheng B, Yu J, Liu G (2012) Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys Chem Chem Phys 14:5349–5362

    Article  PubMed  CAS  Google Scholar 

  27. Ye L, Yang C, Tian L, Zan L, Peng T (2011) Tunable photocatalytic selectivity of fluoropolymer PVDF modified TiO2. Appl Surf Sci 257:8072–8077

    Article  CAS  Google Scholar 

  28. Li Y, Du Q, Liu T, Sun J, Jiao Y, Xia Y, Xia L, Wang Z, Zhang W, Wang K, Zhu H, Wu D (2012) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater Res Bull 47:1898–1904

    Article  CAS  Google Scholar 

  29. Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28:8418–8425

    Article  PubMed  CAS  Google Scholar 

  30. Pei Z, Li L, Sun L, Zhang S, Shan X-q, Yang S, Wen B (2013) Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 51:156–163

    Article  CAS  Google Scholar 

  31. Safarpour M, Khataee A, Vatanpour V (2014) Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties. Ind Eng Chem Res 53:13370–13382

    Article  CAS  Google Scholar 

  32. An N, Liu H, Ding Y, Zhang M, Tang Y (2011) Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Appl Surf Sci 257:3831–3835

    Article  CAS  Google Scholar 

  33. Dikundwar AG, Sathishkumar R, Row TNG, Desiraju GR (2011) Structural variability in the monofluoroethynylbenzenes mediated through interactions involving "organic" fluorine. Cryst Growth Des 11:3954–3963

    Article  CAS  Google Scholar 

  34. Kontos AG, Pelaez M, Likodimos V, Vaenas N, Dionysiou DD, Falaras P (2011) Visible light induced wetting of nanostructured N-F co-doped titania films. Photochem Photobiol Sci 10:350–354

    Article  PubMed  CAS  Google Scholar 

  35. Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C 114:12955–12959

    Article  CAS  Google Scholar 

  36. Bell NJ, Ng YH, Du A, Coster H, Smith SC, Amal R (2011) Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J Phys Chem C 115:6004–6009

    Article  CAS  Google Scholar 

  37. Huang D, Liao S, Quan S, Liu L, He Z, Wan J, Zhou W (2007) Preparation of anatase F doped TiO2 sol and its performance for photodegradation of formaldehyde. J Mater Sci 42:8193–8202

    Article  CAS  Google Scholar 

  38. Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan Z (2012) Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl Mater Interfaces 4:3944–3950

    Article  PubMed  CAS  Google Scholar 

  39. Wang W-S, Wang D-H, Qu W-G, Lu L-Q, Xu A-W (2012) Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J Phys Chem C 116:19893–19901

    Article  CAS  Google Scholar 

  40. Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H-2-production activity of graphene-modified titania nanosheets. Nanoscale 3:3670–3678

    Article  PubMed  CAS  Google Scholar 

  41. Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806

    Article  CAS  Google Scholar 

  42. Shah MSAS, Zhang K, Park AR, Kim KS, Park N-G, Park JH, Yoo PJ (2013) Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5:5093–5101

    Article  CAS  Google Scholar 

  43. Li N, Liu G, Zhen C, Li F, Zhang L, Cheng H-M (2011) Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 21:1717–1722

    Article  CAS  Google Scholar 

  44. Kim H, Cho M-Y, Kim M-H, Park K-Y, Gwon H, Lee Y, Roh KC, Kang K (2013) A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater 3:1500–1506

    Article  CAS  Google Scholar 

  45. Sun L, Zhao Z, Zhou Y, Liu L (2012) Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 4:613–620

    Article  PubMed  CAS  Google Scholar 

  46. Min Y, Zhang K, Zhao W, Zheng F, Chen Y, Zhang Y (2012) Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem Eng J 193:203–210

    Article  CAS  Google Scholar 

  47. Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057

    Article  PubMed  CAS  Google Scholar 

  48. Shah MSAS, Park AR, Zhang K, Park JH, Yoo PJ (2012) Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces 4:3893–3901

    Article  CAS  Google Scholar 

  49. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884

    Article  PubMed  CAS  Google Scholar 

  50. Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115:10694–10701

    Article  CAS  Google Scholar 

  51. Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwen Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Z., Huang, Z. et al. Electrospun PVDF Nanofibers Decorated with Graphene and Titania for Improved Visible Light Photocatalytic Methanation of CO2. Plasmonics 15, 717–725 (2020). https://doi.org/10.1007/s11468-019-01086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01086-6

Keywords

Navigation