Skip to main content
Log in

Hybrid Dielectric-Plasmonic Nanocomposite Arrays for Bulk and Local Refractive Index Sensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonics-based biosensors are often limited by material losses in the form of joule heating while all dielectric nanoparticles systems have relatively smaller local electric field enhancements. For efficient sensing, it is desirable to have a system with high sensitivity but with minimal losses. Here, we demonstrate, using numerical simulations, the capability of a hybrid dielectric-plasmonic system for refractive index sensing applications. We show that the optical resonances of such a hybrid system have smaller linewidths and the peak wavelengths are tunable. Bulk as well as local refractive index sensing are demonstrated in this work. Owing to large sensitivities of 300 nm/RIU with a figure of merit (FOM) of 10, the hybrid photonic-plasmonic systems presented here are promising materials for future biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  2. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and SENSING. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  3. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  4. Evlyukhin AB, Novikov SM, Zywietz U, Eriksen RL, Reinhardt C, Bozhevolnyi SI, Chichkov BN (2012) Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett 12:3749–3755

    Article  CAS  Google Scholar 

  5. Zheludev NI, Kivshar YS (2012) From metamaterials to metadevices. Nat Mater 11:917–924

    Article  CAS  Google Scholar 

  6. Zou L, Withayachumnankul W, Shah CM, Mitchell A, Bhaskaran M, Sriram S, Fumeaux C (2013) Dielectric resonator nanoantennas at visible frequencies. Opt Express 21:1344–1352

    Article  Google Scholar 

  7. Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Lukyanchuk B (2016) Optically resonant dielectric nanostructures. Science 354

  8. Krasnok AE, Miroshnichenko AE, Belov PA, Kivshar YS (2013) All-dielectric nanoantennas. 8806

  9. Krasnok A, Makarov S, Petrov M, Savelev R, Belov P, Kivshar Y (2015) Towards all-dielectric metamaterials and nanophotonics. 9502

  10. Regmi R, Berthelot J, Winkler PM, Mivelle M, Proust J, Bedu F, Ozerov I, Begou T, Lumeau J, Rigneault H, García-Parajó MF, Bidault S, Wenger J, Bonod N (2016) All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano Lett 16:5143–5151

    Article  CAS  Google Scholar 

  11. Ollanik AJ, Oguntoye IO, Hartfield GZ, Escarra MD (2019) Highly sensitive, affordable, and adaptable refractive index sensing with silicon-based dielectric metasurfaces. Adv Mater Technol 4:1800567

    Google Scholar 

  12. Staude I, Pertsch T, Kivshar YS (2019) All-dielectric resonant meta-optics lightens up. ACS Photon 6:802–814

    Article  CAS  Google Scholar 

  13. García-Etxarri A, Gómez-Medina R, Froufe-Pérez LS, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz JJ (2011) Strong magnetic response of submicron Silicon particles in the infrared. Opt Express 19:4815–4826

    Article  Google Scholar 

  14. Groep J, Polman A (2013) Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt Express 21:26285–26302

    Article  Google Scholar 

  15. Sautter J, Staude I, Decker M, Rusak E, Neshev DN, Brener I, Kivshar YS (2015) Active tuning of all-dielectric metasurfaces. ACS Nano 9:4308–4315

    Article  CAS  Google Scholar 

  16. Yan J, Liu P, Lin Z, Yang G (2016) New type high-index dielectric nanosensors based on the scattering intensity shift. Nanoscale 8(11):5996–6007

    Article  CAS  Google Scholar 

  17. Bontempi N, Chong KE, Orton HW, Staude I, Choi D-Y, Alessandri I, Kivshar YS, Neshev DN (2017) Highly sensitive biosensors based on all-dielectric nanoresonators. Nanoscale 9(15):4972–4980

    Article  CAS  Google Scholar 

  18. Yavas O, Svedendahl M, Dobosz P, Sanz V, Quidant R (2017) On-a-chip biosensing based on all-dielectric nanoresonators. Nano Lett 17:4421–4426

    Article  CAS  Google Scholar 

  19. Albella P, Poyli MA, Schmidt MK, Maier SA, Moreno F, Sáenz JJ, Aizpurua J (2013) Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers. J Phys Chem C 117:13573–13584

    Article  CAS  Google Scholar 

  20. Rodriguez I, Shi L, Lu X, Korgel BA, Alvarez-Puebla RA, Meseguer F (2014) Silicon nanoparticles as Raman scattering enhancers. Nanoscale 6(11):5666–5670

    Article  CAS  Google Scholar 

  21. Bontempi N, Salmistraro M, Ferroni M, Depero LE, Alessandri I (2014) Probing the spatial extension of light trapping-induced enhanced Raman scattering in high-density Si nanowire arrays. Nanotechnology 25:465705

    Article  Google Scholar 

  22. Cambiasso J, König M, Cortés E, Schlücker S, Maier S (2018) Surface-enhanced spectroscopies of a molecular monolayer in an all-dielectric nanoantenna. ACS Photon 5:2

    Google Scholar 

  23. Li L, Hutter T, Finnemore AS, Huang FM, Baumberg JJ, Elliott SR, Steiner U, Mahajan S (2012) Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions. Nano Lett 12:4242–4246

    Article  CAS  Google Scholar 

  24. Huang Z, Wang J, Liu Z, Xu G, Fan Y, Zhong H, Cao B, Wang C, Xu K (2015) Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface. J Phys Chem C 119:28127–28135

    Article  CAS  Google Scholar 

  25. Li H, Xu Y, Xiang J, Li XF, Zhang CY, Tie SL, Lan S (2016) Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices. Nanoscale 8(45):18963–18971

    Article  CAS  Google Scholar 

  26. Headland D, Nirantar S, Withayachumnankul W, Gutruf P, Abbott D, Bhaskaran M, Fumeaux C, Sriram S (2015) Terahertz magnetic mirror realized with dielectric resonator antennas. Adv Mater 27:7137–7144

    Article  CAS  Google Scholar 

  27. Lee WSL, Kaltenecker K, Nirantar S, Withayachumnankul W, Walther M, Bhaskaran M, Fischer BM, Sriram S, Fumeaux C (2017) Terahertz near-field imaging of dielectric resonators. Opt Express 25:3756–3764

    Article  Google Scholar 

  28. Headland D, Monnai Y, Abbott D, Fumeaux C, Withayachumnankul W (2018) Tutorial: terahertz beamforming, from concepts to realizations. APL Photon 3:051101

    Article  Google Scholar 

  29. Malheiros-Silveira GN, Hernandez-Figueroa HE (2015) Dielectric resonator nanoantenna coupled to metallic coplanar waveguide. IEEE Photon J 7:1–7

    Article  Google Scholar 

  30. Zou C, Gutruf P, Withayachumnankul W, Zou L, Bhaskaran M, Sriram S, Fumeaux C (2016) Nanoscale TiO2 dielectric resonator absorbers. Opt Lett 41:3391–3394

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge UGC-FRP (Faculty Recharge Programme) start up for partially funding the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Cherukulappurath.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinapati, P., Cherukulappurath, S. Hybrid Dielectric-Plasmonic Nanocomposite Arrays for Bulk and Local Refractive Index Sensing. Plasmonics 15, 441–447 (2020). https://doi.org/10.1007/s11468-019-01046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01046-0

Keywords

Navigation