Skip to main content
Log in

An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface

Plasmonics Aims and scope Submit manuscript

Abstract

An ultra-broadband terahertz absorber is proposed by a metasurface consisting of coplanar graphene fishnet pattern and gold cross-shaped pattern. The mechanisms of the ultra-broad absorption band of the absorber are that multiple localized surface plasmon resonances are excited in the metasurface and the hybridization of the graphene and gold patterns enhances the field in the metasurface. Besides, the multiple reflections of incidence between the top surface and bottom mirror also enhance the absorbance. The design demonstrates that a band of 90% absorption can be expanded to 8.7 THz with a centric frequency 6.45 THz (134.88%). In addition, the proposed absorber is insensitive to the angle of polarization and it is slightly sensitive to the incident angle. Furthermore, the absorption bandwidth of 85% absorbance can be tuned from 2~8 THz to 2~11 THz via changing the bias voltage. The proposed absorber is interesting for the applications of sensing, detecting, and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kasalynas I et al (2008) Design and performance of a room-temperature terahertz detection array for real-time imaging. IEEE J Quantum Electron 14(2):363–369

  2. Mittendorff M et al (2013) Ultrafast graphene-based broadband THz detector. Appl Phys Lett 103(2):666

    Article  CAS  Google Scholar 

  3. Wen Y et al (2017) Photomechanical meta-molecule array for real-time terahertz imaging. Microsyst Nanoeng 3:17071

    Article  Google Scholar 

  4. Kuznetsov SA, Paulish AG, Gelfand AV, Lazorskiy PA, Fedorinin VN (2011) Bolometric THz-to-IR converter for terahertz imaging. Appl Phys Lett 99(2):710

    Article  CAS  Google Scholar 

  5. Sabah C, Mulla B, Altan H, Ozyuzer L (2018) Cross-like terahertz metamaterial absorber for sensing applications. Pramana 91(2):17

    Article  CAS  Google Scholar 

  6. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Article  CAS  Google Scholar 

  7. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):19912

    Article  CAS  Google Scholar 

  8. Neto AHC (2010) The electronic properties of graphene. Phys Status Solidi 244(11):4106–4111

    Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  10. Peng L, Li XF, Jiang X, Li SM (2018) A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by graphene. J Lightwave Technol 36(19):4250–4258

    Article  CAS  Google Scholar 

  11. Zhang T, Ke X, Yin X, Chen L, Li X (2017) Graphene-assisted ultra-compact polarization splitter and rotator with an extended bandwidth. Sci Rep 7(1):12169

    Article  CAS  Google Scholar 

  12. Zhang Y, Feng Y, Jiang T, Cao J, Zhao J, Zhu B (2018) Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial. Carbon 133:170–175

    Article  CAS  Google Scholar 

  13. Shi SF, Zeng B, Han HL, Hong X, Tsai HZ, Jung HS, Zettl A, Crommie MF, Wang F (2015) Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. Nano Lett 15(1):372–377

    Article  CAS  Google Scholar 

  14. Lee SH, Kim HD, Choi HJ, Kang B, Yong RC, Min B (2013) Broadband modulation of terahertz waves with non-resonant graphene meta-devices. IEEE Trans THz Sci Technol 3(6):764–771

    Article  CAS  Google Scholar 

  15. Li L, Cao M, Li T, Meng L, Zhang H, Zhang Y (2017) Complementary graphene metamaterial with independently tunable dual absorption bands at terahertz frequency. Mater Res Express 4(10)

    Article  CAS  Google Scholar 

  16. He G, Stiens J (2017) Enhanced terahertz absorption of graphene composite integrated with double circular metal ring array. Plasmonics 9:1–6

    Google Scholar 

  17. Xu YL, Li EP, Wei XC, Yi D (2016) A novel tunable absorber based on vertical graphene strips. IEEE Microw Wireless Compon Lett 26(1):10–12

    Article  Google Scholar 

  18. Masuminia S, Ghobadi C, Nourinia J, Karamirad M, Mohammadi B (2016) A novel tunable graphene based terahertz absorber with polarization insensitive. Appl Comput Electromagn Soc J 31(12):1439–1444

    Google Scholar 

  19. Zhu B, Zhao J, Jiang T, Feng Y, Zhang Y (2014) Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt Express 22(19):22743–22752

    Article  CAS  Google Scholar 

  20. Xu BZ, Gu CQ, Li Z, Niu ZY (2013) A novel structure for tunable terahertz absorber based on graphene. Opt Express 21(20):23803

    Article  CAS  Google Scholar 

  21. Andryieuski A, Lavrinenko AV (2013) Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt Express 21(7):9144–9155

    Article  CAS  Google Scholar 

  22. Fu P, Liu F, Ren GJ, Su F, Li D, Yao JQ (2018) A broadband metamaterial absorber based on multi-layer graphene in the terahertz region. Opt Commun 417:62–66

    Article  CAS  Google Scholar 

  23. Xiao B, Gu M, Xiao S (2017) Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Appl Opt 56(19):5458–5462

    Article  CAS  Google Scholar 

  24. Chen D, Yang J, Zhang J, Huang J, Zhang Z (2017) Section 1 Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons. Sci Rep 7(1):15836

    Article  CAS  Google Scholar 

  25. Amin M, Farhat M, Bağcı H (2013) An ultra-broadband multilayered graphene absorber. Opt Express 21(24):29938–29948

    Article  CAS  Google Scholar 

  26. Ye L, Chen Y, Cai G, Liu N, Zhu J, Song Z, Liu QH (2017) Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range. Opt Express 25(10):11223

    Article  CAS  Google Scholar 

  27. Zhihong Z, Chucai G, Jianfa Z, Ken L, Xiaodong Y, Shiqiao Q (2014) Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width. Appl Phys Express 8(1):015102

    Article  CAS  Google Scholar 

  28. Liu C, Qi L, Zhang X (2016) Broadband graphene-based metamaterial absorbers. AIP Adv 8(9):3036–3044

    Google Scholar 

  29. Gusynin VP, Sharapov SG, Carbotte JP (2007) Magneto-optical conductivity in graphene. J Phys Condens Matter 19(2):249–264

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61661011 & 61761012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Peng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Yw., Peng, L., Liao, X. et al. An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface. Plasmonics 14, 1057–1061 (2019). https://doi.org/10.1007/s11468-018-0893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0893-1

Keywords

Navigation