Skip to main content
Log in

Theoretical Reveal of Intriguing Standing Wave Modes of Carrying Space Beat-Frequency Phenomenon in Nanopillar Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we demonstrate a kind of new standing wave modes of carrying space beat-frequency effect in an optimized nanopillar array, which can greatly reshape the electric filed distribution and result in high-quality biosensors. The in-depth theoretical research reveals that the mismatch of SPP wave vector and the light wave vector of high-order modes in medium is the crucial factors. The coupling distance, the SPP propagation distance, and the structure parameters also have been systematically investigated. Our results enrich the standing wave modes in nanostructures and give new insights into the fundamental understanding of the standing wave modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gramotnev DK, Bozhevolnyi SI (2014) Nanofocusing of electromagnetic radiation. Nat Photonics 8(1):13–22

    Article  CAS  Google Scholar 

  2. Noda S, Fujita M, Asano T (2007) Spontaneous-emission control by photonic crystals and nanocavities. Nat Photonics 1(8):449–458

    Article  CAS  Google Scholar 

  3. Vahala KJ (2003) Optical microcavities. Nature 424(6950):839–846

    Article  CAS  Google Scholar 

  4. Lin G, Diallo S, Henriet R, Jacquot M, Chembo YK (2014) Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor. Opt Lett 39(20):6009–6012

    Article  CAS  Google Scholar 

  5. Zhang Q, Su R, Liu X, Xing J, Sum TC, Xiong Q (2016) High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater 26(34):6238–6245

    Article  CAS  Google Scholar 

  6. Burek MJ, Chu Y, Liddy MS, Patel P, Rochman J, Meesala S, Hong W, Quan Q, Lukin MD (2014) High quality-factor optical nanocavities in bulk single-crystal diamond. Nat Commun 5:5718

    Article  CAS  Google Scholar 

  7. Allione M, Temnov VV, Fedutik Y, Woggon U, Artemyev MV (2008) Surface plasmon mediated interference phenomena in low-Q silver nanowire cavities. Nano Lett 8(1):31–35

    Article  CAS  Google Scholar 

  8. Ameling R, Giessen H (2010) Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett 10(11):4394–4398

    Article  CAS  Google Scholar 

  9. Bahramipanah M, Dutta-Gupta S, Abasahl B, Martin OJ (2015) Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit. ACS Nano 9(7):7621–7633

    Article  CAS  Google Scholar 

  10. Dickson W, Wurtz G, Evans P, O’Connor D, Atkinson R, Pollard R, Zayats A (2007) Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties. Phys Rev B 76(11):115411

    Article  Google Scholar 

  11. Atkinson R, Hendren WR, Wurtz GA, Dickson W, Zayats AV, Evans P, Pollard RJ (2006) Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Phys Rev B 73(23):235402

    Article  Google Scholar 

  12. Lin C, Povinelli ML (2009) Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Opt Express 17(22):19371–19381

    Article  CAS  Google Scholar 

  13. Lyvers DP, Moon JM, Kildishev AV, Shalaev VM, Wei A (2008) Gold nanorod arrays as plasmonic cavity resonators. ACS Nano 2(12):2569–2576

    Article  CAS  Google Scholar 

  14. Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photonics 7(12):948–957

    Article  CAS  Google Scholar 

  15. Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321(5891):930–930

    Article  CAS  Google Scholar 

  16. Liu Y, Bartal G, Zhang X (2008) All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt Express 16(20):15439–15448

    Article  CAS  Google Scholar 

  17. Noginov MA, Li H, Barnakov YA, Dryden D, Nataraj G, Zhu G, Bonner CE, Mayy M, Jacob Z, Narimanov EE (2010) Controlling spontaneous emission with metamaterials. Opt Lett 35(11):1863–1865

    Article  CAS  Google Scholar 

  18. Damm S, Fedele S, Murphy A, Holsgrove K, Arredondo M, Pollard R, Barry JN, Dowling DP, Rice JH (2015) Plasmon enhanced fluorescence studies from aligned gold nanorod arrays modified with SiO2 spacer layers. Appl Phys Lett 106(18):433001–433422

    Article  Google Scholar 

  19. Damm S, Lordan F, Murphy A, Mcmillen M, Pollard R, Rice JH (2014) Application of AAO matrix in aligned gold nanorod array substrates for surface-enhanced fluorescence and Raman scattering. Plasmonics 9(6):1371–1376

    Article  CAS  Google Scholar 

  20. Cheng ZQ, Zhong YT, Nan F, Wang JH, Zhou L, Wang QQ (2014) Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays. J Appl Phys 115(22):617

    Article  Google Scholar 

  21. Nan F, Cheng ZQ, Wang YL, Zhang Q, Zhou L, Yang ZJ, Zhong YT, Liang S, Xiong Q, Wang QQ (2014) Manipulating nonlinear emission and cooperative effect of CdSe/ZnS quantum dots by coupling to a silver nanorod complex cavity. Sci Rep 4(6183):4839

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao X, Wong MM, Chiu SK, Pang SW (2015) Effects of three-layered nanodisk size on cell detection sensitivity of plasmon resonance biosensors. Biosens Bioelectron 74:799–807

    Article  CAS  Google Scholar 

  23. Päivänranta B, Merbold H, Giannini R, Büchi L, Gorelick S, David C, Löffler JF, Feurer T, Ekinci Y (2011) High aspect ratio plasmonic nanostructures for sensing applications. ACS Nano 5(8):6374–6382

    Article  Google Scholar 

  24. Wang J, Zhang C, Zhang J, Song H, Wang P, Lu Y, Fei G, Xu W, Xu W, Zhang L (2017) Hybrid plasmonic cavity modes in arrays of gold nanotubes. Advanced Optical Materials 5. https://doi.org/10.1002/adom.201600731

  25. Palik ED (1985) Handbook of optical constants of solids. Academic, Orlando Google Scholar:286–297

    Google Scholar 

  26. Huang Y, Zhang X, Li J, Ma L, Zhang Z (2017) Analytical plasmon dispersion in subwavelength closely spaced Au nanorod arrays from planar metal–insulator–metal waveguides. J Mater Chem C 5:6079–6085

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of China (11604227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yidong Hou or Fuhua Gao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Ji, B.X., Wang, L. et al. Theoretical Reveal of Intriguing Standing Wave Modes of Carrying Space Beat-Frequency Phenomenon in Nanopillar Arrays. Plasmonics 14, 711–719 (2019). https://doi.org/10.1007/s11468-018-0849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0849-5

Keywords

Navigation