Skip to main content
Log in

Effect of Graphene on the Sunlight Absorption Rate of Silicon Thin Film Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The electromagnetic property of graphene is studied by finite-difference time-domain (FDTD) method. As the graphene has excellent electrical conductivity and high transparency, it has certain advantages as a transparent electrode for solar cells. This paper designs a three-layer film structure composed of graphene, silicon, and silicon dioxide (SiO2). Then, the effects of the chemical potential and the scattering rate of the graphene on the light absorption of the film are studied. The study found that the electromagnetic property of graphene is relatively stable, which is not easily influenced by the external environment. After changing its chemical potential, scattering rate, and other parameters, it is found that the film absorption rate is less affected unless the large range of chemical potential changes; it will lead to a decline in the absorption rate of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294

    Article  CAS  PubMed  Google Scholar 

  2. Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, Swan AK, Goldberg BB, Ruoff RS (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924

    Article  CAS  PubMed  Google Scholar 

  3. Bouzianas GD, Kantartzis NV, Tsiboukis TD (2012) Subcell dispersive finite-difference time-domain schemes for infinite graphene-based structures. IET Microwaves, Antennas & Propagation 6(4):377–386

    Article  Google Scholar 

  4. Di Xu, Cheng Deng, Hai Lin, Helin Yang (2013) A versatile material model for the FDTD simulation of graphene,” IEEE International Conference on Microwave Technology & Computational Electromagnetics, Qingdao, p 345–348

  5. de Oliveira RMS, Rodrigues NRNM, Dmitriev V (2015) FDTD formulation for graphene modeling based on piecewise linear recursive convolution and thin material sheets techniques. IEEE Antennas and Wireless Propagation Letters 14:767–770

    Article  Google Scholar 

  6. Wang S-Y, Zhang T, Yin W-Y, Zhou L (2013) Interaction of electromagnetic waves with multilayer bi-anisotropic graphene structure. Radio Science Meeting. IEEE, Lake Buena Vista, p 53–53. https://doi.org/10.1109/USNC-URSI.2013.6715359

  7. Wang X-C, Zhao W-S, Hu J, Zhang T (2013) A novel tunable antenna at THz frequencies using graphene-based artificial magnetic conductor (AMC). Progress in Electromagnetics Research Letters 41:29–38

    Article  Google Scholar 

  8. Yang L, Li L, Chen L (2015) Electromagnetic characteristics of 1D grapheme photonic crystal by using SBC-FDTD method of oblique incidence in THz. Progress in Electromagnetics Research M 43:135–145

    Article  CAS  Google Scholar 

  9. Lixia Y, Lingling L, Ting Z, Lijuan S (2016) Terahertz electromagnetic characteristics of one-dimensional graphene-photonic crystal by FDTD method (in Chinese). Chinese Journal of Radio Science 31(2):262–268

    Google Scholar 

  10. Liu Y-J, Xie X, Xie L, Yang Z-K, Yang H-W (2016) Dual-band absorption characteristics of one-dimensional photonic crystal with graphene-based defect. Optik 127(9):3945–3948

    Article  CAS  Google Scholar 

  11. Guo-long L, Jing-ming Z, Li-hui W, Jin L, Li-jun H (2015) Antireflection coatings in graphene-based polymer solar cell (in Chinese). Advances in New and Renewable Energy 3(5):336–339

    Google Scholar 

  12. De-biao G, Yue-li W, Xiang-qin Z (2003) Shift operator method applied for dispersive medium in FDTD analysis (in Chinese). Chinese Journal of Radio Science 18(4):359–363

    Google Scholar 

  13. Yang H-W, Ru-Shan C, Yun Z (2006) SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma (in Chinese). Acta Phys Sin 55(7):3464–3469

    CAS  Google Scholar 

  14. Hong-wei Y, Hong Y, Ru-shan C, Yang Y (2007) SO-FDTD analysis of anisotropic magnetized plasma (in Chinese). Acta Phys Sin 56(3):1443–1446

    Google Scholar 

  15. Yang HW, Liu Y (2013) SO-FDTD analysis on the stealth effect of magnetized plasma with Epstein distribution. Optik 124(15):2037–2040

    Article  Google Scholar 

  16. Hong-wei Y, Ru-shan C, Yun Z (2006) SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma (in Chinese). Acta Phys Sin 55(7):3464–3469

    Google Scholar 

  17. Liu J-x, Zhang L-x, Zhang J-l, Yang Z-K, Yang H-W (2016) Anisotropic ferrite microstrip antenna simulation and analysis. Optik 127(8):4144–4149

    Article  CAS  Google Scholar 

  18. Yin X, Zhang H, Zhao Z-W, Sun SJ (2012) A high efficient SO-FDTD method for magnetized collisional plasma. Journal of Electromagnetic Waves and Applications 26(14–15):1911–1921

    Article  Google Scholar 

  19. Zhou F, Hao R, Jin X-F, Zhang X-M, Li E-P (2014) A graphene-enhanced fiber-optic phase modulator with large linear dynamic range. IEEE Photon Technol Lett 26(18):1867–1870

    Article  CAS  Google Scholar 

  20. Guo Y, Zhang T, Yin W-Y, Wang X-H (2017) Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications. IEEE Transactions on Terahertz Science and Technology 5(3):358–367

    Article  CAS  Google Scholar 

  21. Xie Yanan, Liu Zhikun, Geng Li, Pan Dengke, Song Pan,“Properties of graphene and antenna applications in microwave to THz,” Acta Opt Sin, 35, S116005–S116007, 2015

  22. Rubin M (1985) Optical properties of soda lime silica glasses. Sol Energy Mater 12(4):275–288

    Article  CAS  Google Scholar 

  23. Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol Energy Mater Sol Cells 92(11):1305–1310

    Article  CAS  Google Scholar 

  24. Aksoy S (2007) An alternative algorithm for both narrowband and wideband Lorentzian dispersive materials modeling in the finite-difference time-domain method. IEEE Transactions on Microwave Theory and Techniques 55(4):703–708

    Article  Google Scholar 

  25. Koledintseva MY, Drewniak JL, Pommerenke DJ, Antonini G, Orlandi A, Rozanov KN (2005) Wide-band Lorentzian media in the FDTD algorithm. IEEE Trans Electromagn Compat 47(2):392–399

    Article  Google Scholar 

  26. Shibayama J, Sasaki N, Wakabayashi Y, Yamauchi J, Nakano H (2013) Frequency-dependent fundamental LOD-FDTD formulation for a multipole Debye model. IEEE Photon Technol Lett 25(10):965–968

    Article  Google Scholar 

  27. Zhu R-J, Wang J, Jin G-F (2005) Mie scattering calculation by FDTD employing a modified Debye model for gold material. Optik 116(9):419–422

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the excellent project of Nanjing Agricultural University (Grant No. JF17080123) and the College of Sciences of Nanjing Agricultural University (Grant No. CoS201410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JX., Xie, X., Du, P. et al. Effect of Graphene on the Sunlight Absorption Rate of Silicon Thin Film Solar Cells. Plasmonics 14, 353–357 (2019). https://doi.org/10.1007/s11468-018-0811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0811-6

Keywords

Navigation