Skip to main content
Log in

Simulation Studies of Photoacoustic Response from Gold-Silica Core-Shell Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Metal nanoparticles especially of noble metals are used as an exogenous contrast agent for biomedical photoacoustic (PA) imaging in the tissue transmission window extending from visible to near infrared 700–1100 nm band. Different geometrical configurations of gold and silver nanoparticles like spherical core-shell, nanorod, and nanocages are promising candidates for thermoplasmonics, photothermal therapy, photothermal imaging, and photoacoustic imaging. In the current study, we simulated the photoacoustic response of gold and silica core-shell nanoparticle in water medium. Finite element simulations were carried out to study the spectral absorption response and effect of nanosecond laser pulse excitation on the spatial/temporal temperature as well as photoacoustic pressure variations of different core-shell geometry of nanoparticle. We have optimized the dimensions of gold nanosphere, gold-silica, and silica-gold core-shell geometries for optimum photoacoustic conversion efficiency. Further, the effect of shell thickness on the pulse photoacoustic signals for core-shell gold-silica and silica-gold nanoparticle has been studied. We concluded that silica-gold core-shell nanoparticles possess better photoacoustic conversion efficiency in comparison to gold nanosphere and gold-silica core-shell geometries. The prime aim of this study is to design efficient nano-probes for photoacoustic imaging, photoacoustic tomography, photothermal therapy, and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217. https://doi.org/10.1039/B514191E

    Article  CAS  PubMed  Google Scholar 

  2. Tian C, Qian W, Shao X, Xie Z, Xu C, Liu S, Cheng Q, Liu B, Wang X (2016) Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells. Adv Sci 3(12):1600237. https://doi.org/10.1002/advs.201600237

    Article  CAS  Google Scholar 

  3. Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9(8):2825–2831. https://doi.org/10.1021/nl802929u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qina Z, Bischof JC (2012) Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev 41(3):1191–1217. https://doi.org/10.1039/C1CS15184C

    Article  Google Scholar 

  5. Oraevsky AA, Karabutov AA, Savateeva EV (2001) Enhancement of optoacoustic tissue contrast with absorbing nanoparticles. Proc SPIE 4434:60–69

    Article  Google Scholar 

  6. Agarwal A, Huang SW, O'Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701. https://doi.org/10.1063/1.2777127

    Article  CAS  Google Scholar 

  7. Bayer CL, Chen Y-S, Kim S, Mallidi S, Sokolov K, Emelianov S (2011) Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods. Biomed Opt Express 2(7):1828–1835. https://doi.org/10.1364/BOE.2.001828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu K, Xue X, Furlani EP (2016) Theoretical comparison of optical properties of near-infrared colloidal plasmonic nanoparticles. Nat Sci Rep 6(1):34189. https://doi.org/10.1038/srep34189

    Article  CAS  Google Scholar 

  9. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  PubMed  Google Scholar 

  10. Shi Y, Yang S, Xing D (2017) Quantifying the Plasmonic nanoparticle size effect on photoacoustic conversion efficiency. J Phys Chem C 121(10):5805–5811. https://doi.org/10.1021/acs.jpcc.6b12498

    Article  CAS  Google Scholar 

  11. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248. https://doi.org/10.1021/jp057170o

    Article  CAS  Google Scholar 

  12. Chen Y-S, Frey W, Aglyamov S, Emelianov S (2012) Environment-dependent generation of photoacoustic waves from Plasmonic nanoparticles. Small 8(1):47–52. https://doi.org/10.1002/smll.201101140

    Article  CAS  PubMed  Google Scholar 

  13. Weber V, Feis A, Gellini C, Pilot R, Salvib PR, Signorini R (2015) Far- and near-field properties of gold nanoshells studied by photoacoustic and surface-enhanced Raman spectroscopies. Phys Chem Chem Phys 17(33):21190–21197. https://doi.org/10.1039/C4CP05054A

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Xie X, Wang X, Ku G, Gill KL, O’Neal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a Nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692. https://doi.org/10.1021/nl049126a

    Article  CAS  Google Scholar 

  15. Wu D, Lin H, Jiang MS, Jiang H (2014) Contrast agents for photoacoustic and Thermoacoustic imaging: a review. Int J Mol Sci 15(12):23616–23639. https://doi.org/10.3390/ijms151223616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiang L, Xing D, Gu H, Yang D, Zeng L, Yang S (2006) Gold nanoshell-based photoacoustic imaging application in biomedicine. Proceedings of the IEEE international symposium on biophotonics, Nanophotonics and Metamaterials 76–79

  17. Sathiyamoorthy K, Strohm EM, Kolios MC (2016) Photoacoustic investigation of gold nanoshells for bioimaging applications. Proc. SPIE 9724, Plasmonics in Biology and Medicine XIII: 97240

  18. Nguyen SC, Zhang Q, Manthiram K, Ye X, Lomont JP, Harris CB, Weller H, Paul Alivisatos A (2016) Study of heat transfer dynamics from gold Nanorods to the environment via time-resolved infrared spectroscopy. ACS Nano 10(2):2144–2151. https://doi.org/10.1021/acsnano.5b06623

    Article  CAS  PubMed  Google Scholar 

  19. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B6:4370

    Article  Google Scholar 

  20. Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7(2):171–187. https://doi.org/10.1002/lpor.201200003

    Article  CAS  Google Scholar 

  21. Pang GA, Laufer J, Niessner R, Haisch C (2016) Photoacoustic signal generation in gold Nanospheres in aqueous solution: signal generation enhancement and particle diameter effects. J Phys Chem C 120(48):27646–27656. https://doi.org/10.1021/acs.jpcc.6b09374

    Article  CAS  Google Scholar 

  22. Hatef A, Darvish B, Dagallier A, Davletshin YR, William J, Carl Kumaradas J, Rioux D, Meunier M (2015) Analysis of photoacoustic response from gold–silver alloy nanoparticles irradiated by short pulsed laser in water. J Phys Chem C 119(42):24075–24080. https://doi.org/10.1021/acs.jpcc.5b08359

    Article  CAS  Google Scholar 

  23. Cardellini A, Fasano M, BozorgBigdeli M, Chiavazzo E, Asinari P (2016) Thermal transport phenomena in nanoparticle suspensions. J Phys Condens Matter 28(48):483003. https://doi.org/10.1088/0953-8984/28/48/483003

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y-S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold Nanorods as photoacoustic signal Nanoamplifiers. Nano Lett 11(2):348–354. https://doi.org/10.1021/nl1042006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the Plasmon response of complex nanostructures. Science 302(5644):419–422. https://doi.org/10.1126/science.1089171

    Article  CAS  PubMed  Google Scholar 

  26. Navas MP, Soni RK (2015) Laser-generated bimetallic ag-au and ag-cu Core-Shell nanoparticles for refractive index sensing. Plasmonics 10(3):681–690. https://doi.org/10.1007/s11468-014-9854-5

    Article  CAS  Google Scholar 

  27. Katyal J, Soni RK (2014) Localized surface Plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures. Plasmonics 9(5):1171–1181. https://doi.org/10.1007/s11468-014-9728-x

    Article  CAS  Google Scholar 

  28. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120(11):5444–5454. https://doi.org/10.1063/1.1647518

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Ghai, D.P. & Soni, R.K. Simulation Studies of Photoacoustic Response from Gold-Silica Core-Shell Nanoparticles. Plasmonics 13, 1833–1841 (2018). https://doi.org/10.1007/s11468-018-0697-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0697-3

Keywords

Navigation