Skip to main content
Log in

Surface-Assisted Carrier Excitation in Plasmonic Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a quantum-mechanical model for surface-assisted carrier excitation by optical fields in plasmonic nanostructures of arbitrary shape. We derive an explicit expression, in terms of local fields inside the metal structure, for surface absorbed power and surface scattering rate that determine the enhancement of carrier excitation efficiency near the metal-dielectric interface. We show that surface scattering is highly sensitive to the local field polarization and can be incorporated into metal-dielectric function along with phonon and impurity scattering. We also show that the obtained surface scattering rate describes surface-assisted plasmon decay (Landau damping) in nanostructures larger than the nonlocality scale. Our model can be used for calculations of plasmon-assisted hot carrier generation rates in photovoltaics and photochemistry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brongersma ML, Halas NJ, Nordlander P (2015) Nat Nanotechnol 10:25

    Article  CAS  Google Scholar 

  2. Lee YK, Jung CH, Park J, Seo H, Somorjai GA, Park JY (2011) Nano Lett 11:4251

    Article  CAS  Google Scholar 

  3. Wang F, Melosh NA (2011) Nano Lett 11:5426

    Article  CAS  Google Scholar 

  4. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Science 332:702

    Article  CAS  Google Scholar 

  5. Sobhani A, Knight MW, Wang Y, Zheng B, King NS, Brown LV, Fang Z, Nordlander P, Halas NJ (2013) Nat Commun 4:1643

    Article  Google Scholar 

  6. Wu K, Rodriguez-Cordoba WE, Yang Y, Lian T (2013) Nano Lett 13:5255

    Article  CAS  Google Scholar 

  7. Knight MW, Wang Y, Urban AS, Sobhani A, Zheng BY, Nordlander P, Halas NJ (2013) Nano Lett 13:1687

    Article  CAS  Google Scholar 

  8. Clavero C (2014) Nat Photonics 8:95

    Article  CAS  Google Scholar 

  9. Chalabi H, Schoen D, Brongersma ML (2014) Nano Lett 14:1374

    Article  CAS  Google Scholar 

  10. Sundararaman R, Narang P, Jermyn AS, Goddard III WA, Atwater HA (2014) Nat Commun 5:5788

    Article  CAS  Google Scholar 

  11. Zheng BY, Zhao H, Manjavacas A, McClain M, Nordlander P, Halas NJ (2015) Nat Commun 6:7797

    Article  Google Scholar 

  12. Thomann I, Pinaud BA, Chen Z, Clemens BM, Jaramillo TF, Brongersma ML (2011) Nano Lett 11:3440

    Article  CAS  Google Scholar 

  13. Lee J, Mubeen S, Ji X, Stucky GD, Moskovits M (2012) Nano Lett 12:5014

    Article  CAS  Google Scholar 

  14. Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ (2013) Nano Lett 13:240

    Article  CAS  Google Scholar 

  15. Mubeen S, Lee J, Singh N, Krämer S., Stucky GD, Moskovits M (2013) Nat Nanotechnol 8:247

    Article  CAS  Google Scholar 

  16. Mukherjee S, Zhou L, Goodman AM, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas NJ (2014) J Am Chem Soc 136:64

    Article  CAS  Google Scholar 

  17. Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58:533

    Article  CAS  Google Scholar 

  18. Kresin VV (1992) Phys Rep 220:1

    Article  CAS  Google Scholar 

  19. Voisin C, Del Fatti N, Christofilos D, Vallée F (2001) J Phys Chem B 105:2264

    Article  CAS  Google Scholar 

  20. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668

    Article  CAS  Google Scholar 

  21. Noguez C (2007) J Phys Chem C 111:3806

    Article  CAS  Google Scholar 

  22. Klar T, Perner M, Grosse S, von Plessen G, Spirkl W, Feldmann J (1998) Phys Rev Lett 80:4249

    Article  CAS  Google Scholar 

  23. Sönnichsen C., Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson OV, Mulvaney P (2002) Phys Rev Lett 88:077402

    Article  Google Scholar 

  24. Westcott SL, Jackson JB, Radloff C, Halas NJ (2002) Phys Rev B 66:155431

    Article  Google Scholar 

  25. Raschke G, Brogl S, Susha AS, Rogach AL, Klar T, Feldmann J (2004) Nano Lett 4:1853

    Article  CAS  Google Scholar 

  26. Arbouet A, Christofilos D, Del Fatti N, Vallëe F, Huntzinger JR, Arnaud L, Billaud P, Broyer M (2004) Phys Rev Lett 93:127401

    Article  CAS  Google Scholar 

  27. Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Nano Lett 4:2355

    Article  CAS  Google Scholar 

  28. Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland GV (2006) Phys Chem Chem Phys 8:3540

    Article  CAS  Google Scholar 

  29. Baida H, Billaud P, Marhaba S, Christofilos D, Cottancin E, Crut A, Lermé J, Maioli P, Pellarin M, Broyer M, Del Fatti N, Vallée F (2009) Nano Lett 9:3463

    Article  CAS  Google Scholar 

  30. Blaber MG, Henry A-I, Bingham JM, Schatz GC, Van Duyne RP (2012) J Phys Chem C 116:393

    Article  CAS  Google Scholar 

  31. Juvé V, Cardinal MF, Lombardi A, Crut A, Maioli P, Përez-Juste J, Liz-Marzán LM, Del Fatti N, Vallée F (2013) Nano Lett 13:2234

    Article  Google Scholar 

  32. O’Brien MN, Jones MR, Kohlstedt KL, Schatz GC, Mirkin CA (2015) Nano Lett 15:1012

    Article  Google Scholar 

  33. Kawabata A, Kubo R (1966) J Phys Soc Jpn 21:1765

    Article  CAS  Google Scholar 

  34. Lushnikov AA, Simonov AJ (1974) Z Physik 270:17

    Article  CAS  Google Scholar 

  35. Kraus WA, Schatz GC (1983) J Chem Phys 79:6130

    Article  CAS  Google Scholar 

  36. Barma M, Subrahmanyam VJ (1989) J Phys Condens Matter 1:7681

    Article  Google Scholar 

  37. Yannouleas C, Broglia RA (1992) Ann Phys 217:105

    Article  CAS  Google Scholar 

  38. Eto M, Kawamura K (1996) Surf Rev Lett 3:151

    Article  CAS  Google Scholar 

  39. Uskov AV, Protsenko IE, Mortensen NA, O’Reilly EP (2013) Plasmonics 9:185

    Article  Google Scholar 

  40. Khurgin JB, Sun G (2015) Opt Exp 23:250905

    Google Scholar 

  41. Kirakosyan AS, Stockman MI, Shahbazyan TV (2016) Phys Rev B 94:155429

    Article  Google Scholar 

  42. Molina RA, Weinmann D, Jalabert RA (2002) Phys Rev B 65:155427

    Article  Google Scholar 

  43. Weick G, Molina RA, Weinmann D, Jalabert RA (2005) Phys Rev B 72:115410

    Article  Google Scholar 

  44. Yuan Z, Gao S (2008) Surf Sci 602:440

    Article  Google Scholar 

  45. Lermé J., Baida H, Bonnet C, Broyer M, Cottancin E, Crut A, Maioli P, Del Fatti N, Vallée F., Pellarin M (2010) J Phys Chem Lett 1:2922

    Article  Google Scholar 

  46. Lermé J. (2011) J Phys Chem C 115:14098

    Article  Google Scholar 

  47. Li X, Di Xiao, Zhang Z (2013) New J Phys 15:023011

    Article  Google Scholar 

  48. Manjavacas A, Liu JG, Kulkarni V, Nordlander P (2014) ACS Nano 8:7630

    Article  CAS  Google Scholar 

  49. Genzel L, Martin TP, Kreibig U (1975) Z Phys B 21:339

    Article  CAS  Google Scholar 

  50. Ruppin R, Yatom H (1976) Phys Status Solidi 74:647

    Article  Google Scholar 

  51. Krauss WA, Schatz GC (1983) Chem Phys Lett 99:353

    Article  Google Scholar 

  52. Coronado EA, Schatz GC (2003) J Chem Phys 119:3926

    Article  CAS  Google Scholar 

  53. Moroz A (2008) J Phys Chem C 112:10641

    Article  CAS  Google Scholar 

  54. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  55. Mortensen NA (2013) Photonic Nanostruct 11:303

    Article  Google Scholar 

  56. Mortensen NA, Raza S, Wubs M, Sondergaard T, Bozhevolnyi SI (2014) Nat Commun 5:3809

    CAS  Google Scholar 

  57. Landau LD, Lifshitz EM (2004) Electrodynamics of continuous media. Elsevier, Amsterdam

    Google Scholar 

  58. Shahbazyan TV (2016) Phys Rev B 94:235431

    Article  Google Scholar 

  59. Balian R, Bloch C (1970) Ann Phys 60:401

    Article  Google Scholar 

  60. Shahbazyan TV (2016) Phys Rev Lett 117:207401

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under grant nos. DMR-1610427 and HRD-1547754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tigran V. Shahbazyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbazyan, T.V. Surface-Assisted Carrier Excitation in Plasmonic Nanostructures. Plasmonics 13, 757–761 (2018). https://doi.org/10.1007/s11468-017-0569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0569-2

Keywords

Navigation