Skip to main content
Log in

Resonant Enhancement of Photoluminescence Intensity and Anisotropy of Quantum Dot Monolayers with Self-Assembled Gold Nanorods

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Quantum dot (QD) films are well known as promising materials for photo-detectors and photovoltaic and next generation display devices. In this study, we show, experimentally, how compact monolayer films of cadmium selenide (CdSe) QDs having compact assemblies of partially aligned metal nanorods placed in close proximity can be used to enhance the photoluminescence (PL) emission intensity by greater than ten times while the PL anisotropy can be increased to almost 0.9. Finite difference time domain (FDTD) simulations on smaller scale gold nanorod (GNR) arrays on CdSe QD layer not only explain this huge emission enhancement and anisotropy observed experimentally but also provide insight into the parameters which if further optimized can lead to even larger enhancement and emission anisotropy in similar hybrid systems. Our work paves the way for creation of large scale, simple and inexpensive, but highly efficient, metal nanorod-QD hybrid films which can find wide ranging potential applications in displays, detectors, and photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 310:86– 89

    Article  CAS  Google Scholar 

  2. Akimov A, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD (2007) Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450:402–406

    Article  CAS  Google Scholar 

  3. Giebink NC, Wiederrecht GP, Wasielewski MR, Forrest SR (2011) Thermodynamic efficiency limit of excitonic solar cells. Phys Rev B 83:195326

    Article  Google Scholar 

  4. Li L, Chen Y, Lu Q, Ji J, Shen Y, Xu M, Fei R, Yang G, Zhang K, Zhang J-R, Zhu J-J (2013) Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods. Sci Rep 3:1529

    Article  Google Scholar 

  5. Kazuma E, Tatsuma T (2012) Photoelectrochemical analysis of allowed and forbidden multipole plasmon modes of polydisperse ag nanorods. J Phys Chem C 117:2435–2441

    Article  Google Scholar 

  6. Novotny L, Van Hulst N (2011) Antennas for light. Nat Photonics 5:83–90

  7. Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Long-range resonance transfer of electronic excitations in close-packed cdse quantum-dot solids. Phys Rev B 54:8633

    Article  CAS  Google Scholar 

  8. Curto AG, Taminiau TH, Volpe G, Kreuzer MP, Quidant R, Hulst NF (2013) Multipolar radiation of quantum emitters with nanowire optical antennas. Nat. comm. 4:1750

    Article  Google Scholar 

  9. Delga A, Feist J, Bravo-Abad J, Garcia-Vidal FJ (2014) Quantum emitters near a metal nanoparticle: strong coupling and quenching. Phys Rev Lett 112:253601

    Article  CAS  Google Scholar 

  10. Liu M, Lee T-W, Gray SK, Guyot-Sionnest P, Pelton M (2009) Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys Rev Lett 102:107401

    Article  Google Scholar 

  11. Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Pelayo Garcia de Arquer F, Gatti F, Koppens FHL (2012) Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotech 7:363–368

    Article  CAS  Google Scholar 

  12. Sun S, Gao L, Liu Y, Sun J (2011) Assembly of CDSE nanoparticles on graphene for low-temperature fabrication of quantum dot sensitized solar cell. App Phys Lett 98:093112

    Article  Google Scholar 

  13. Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ (2012) Graphene-antenna sandwich photodetector. Nano Lett 12:3808–3813

    Article  CAS  Google Scholar 

  14. Haridas M, Tripathi LN, Basu JK (2011) Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays. App Phys Lett 98:063305

    Article  Google Scholar 

  15. Tripathi LN, Praveena M, Basu JK (2013) Plasmonic tuning of photoluminescence from semiconducting quantum dot assemblies. Plasmonics 8:657–664

    Article  CAS  Google Scholar 

  16. Haridas M, Basu JK, Tiwari AK, Venkatapathi M (2013) Photoluminescence decay rate engineering of CDSE quantum dots in ensemble arrays embedded with gold nano-antennae. J App Phys 114:064305

    Article  Google Scholar 

  17. Indukuri C, Mukherjee A, Basu JK (1111) Tailoring local density of optical states to control emission intensity and anisotropy of quantum dots in hybrid photonic-plasmonic templates. App Phys Lett 1063(13):2015

    Google Scholar 

  18. Ayari A, Cobas E, Ogundadegbe O, Fuhrer MS (2007) Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J App Phys 101:14507–14507

    Article  Google Scholar 

  19. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech 7:699–712

    Article  CAS  Google Scholar 

  20. Praveena M, Mukherjee A, Venkatapathi M, Basu JK (2015) Plasmon-mediated emergence of collective emission and enhanced quantum efficiency in quantum dot films. Phys Rev B 92:235403

    Article  Google Scholar 

  21. Zhong L, Zhou X, Bao S, Shi Y, Wang Y, Hong S, Huang Y, Wang X, Xie Z, Zhang Q (2011) Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods. J Mat Chem 21:14448–14455

    Article  CAS  Google Scholar 

  22. Russell KJ, Liu T-L, Cui S, Evelyn L (2012) Large spontaneous emission enhancement in plasmonic nanocavities. Nat Photon 6:459–462

    Article  CAS  Google Scholar 

  23. Biagioni P, Huang J-S, Hecht B (2012) Rep Prog Phys 75:024402

    Article  Google Scholar 

  24. Dorfmüller J, Vogelgesang R, Thomas Weitz R, Rockstuhl C, Etrich C, Pertsch T, Lederer F, Kern K (2009) Fabry-Perot resonances in one-dimensional plasmonic nanostructures. Nano Lett 9:2372–2377

    Article  Google Scholar 

  25. Lee KCJ, Chen Y-H, Lin H-Y, Cheng C-C, Chen P-Y, Wu T-Y, Shih M-H, Wei K-H, Li L-J, Chang C-W (2015) Plasmonic gold nanorods coverage influence on enhancement of the photoluminescence of two-dimensional MoS2 monolayer. Sci Rep 5:16374

    Article  CAS  Google Scholar 

  26. Tripathi LN, Praveena M, Valson P, Basu JK (2014) Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna. App Phy Lett 105:163106

    Article  Google Scholar 

  27. Ng KC, Udagedara IB, Rukhlenko ID, Yi C, Tang Y, Premaratne M, Cheng W (2011) Free-standing plasmonic-nanorod superlattice sheets. ACS Nano 6:925–934

    Article  Google Scholar 

  28. Biteen JS, Sweatlock LA, Mertens H, Lewis NS, Polman A, Atwater HA (2007) Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment. J Phys Chem C 111:13372–13377

    Article  CAS  Google Scholar 

  29. Kummerlen J, Leitner A, Brunner H, Aussenegg FR, Wokaun A (1993) Enhanced dye fluorescence over silver island films- analysis of the distance dependence. Molecul Phys 80:1031–1046

    Article  Google Scholar 

  30. Wang D, Hore MJA, Ye X, Zheng C, Murray CB, Composto RJ (2014) Gold nanorod length controls dispersion, local ordering, and optical absorption in polymer nanocomposite films. Soft Matter 10(19):3404–3413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Department of Science and Technology (Nanomission), India for the financial support and the Advanced Facility for Microscopy and Microanalysis, Indian Institute of Science, Bangalore for the access to TEM and SEM measurements. MP acknowledges UGC, India for the financial support. RD acknowledges (DST)Inspire fellowship, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveena, M., Dutta, R. & Basu, J.K. Resonant Enhancement of Photoluminescence Intensity and Anisotropy of Quantum Dot Monolayers with Self-Assembled Gold Nanorods. Plasmonics 12, 1911–1919 (2017). https://doi.org/10.1007/s11468-016-0462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0462-4

Keywords

Navigation