Skip to main content
Log in

The Influence of Element Deformation on Terahertz Mode Interaction in Split-Ring Resonator-Based Meta-Atoms

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The interaction between terahertz (THz) resonance modes and element deformation in rectangular split-ring resonator (RSRR)-based meta-atoms (MAs) is investigated experimentally. Two types of RSRR-based MAs are presented: lateral-varied SRR (LV-SRR) and arm-twisted SRR (AT-SRR). When the distances from the gaps to the opposite sides of above meta-atoms increase from 10 to 40 μm, the inductive-capacitive (LC) resonance modes and dipole oscillation modes exhibit redshift behavior. The quality factor (Q factor) of LC resonance decreases while that of dipole oscillation modes increases. The THz mode interaction is subject to the distance between the gap and opposite side. An extension of lateral side contributes much more to the enhancement of Q factor of dipole oscillation mode than the twisted arms. The relationship between the near-field coupling effect and THz modes is revealed by the analysis of surface currents as well as the electric energy density distribution, as is in agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292(5514):77–79

    Article  CAS  Google Scholar 

  2. Fang N, Lee H, Sun C et al (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721):534–537

    Article  CAS  Google Scholar 

  3. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312(5781):1780–1782

    Article  CAS  Google Scholar 

  4. Dong ZG, Liu H, Cao JX et al (2010) Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl Phys Lett 97(11):114101–114103

    Article  Google Scholar 

  5. Withayachumnankul W, Lin H, Serita K (2012) Sub-diffraction thin-film sensing with planar terahertz metamaterials. Opt Express 20(3):3345–3352

    Article  CAS  Google Scholar 

  6. Chowdhury DR, Su X, Zeng Y et al (2014) Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials. Opt Express 22(16):19401–19410

    Article  Google Scholar 

  7. Padilla WJ, Taylor AJ, Highstrete C et al (2006) Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett 96(10):1–2

    Article  Google Scholar 

  8. Yue W, Wang Z, Yang Y et al (2016) Plasmonics. doi:10.1007/s11468-016-0210-9

    Google Scholar 

  9. Aydin K, Ferry VE, Briggs RM et al (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:193–198

    Article  Google Scholar 

  10. Lee SH, Choi M, Kim TT, Lee S et al (2012) Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11(11):936–941

    Article  CAS  Google Scholar 

  11. Shin D, Urzhumov Y, Jung Y et al (2012) Broadband electromagnetic cloaking with smart metamaterials. Nat Commun 3:1213

    Article  Google Scholar 

  12. Ma HF, Cui TJ (2010) Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun 1(3):605–629

    Article  Google Scholar 

  13. Wang B, Wang G, Wang L (2016) Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11(2):523–530

    Article  CAS  Google Scholar 

  14. GuoY YL, Pan W et al (2014) Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs. Plasmonics 9(4):951–957

    Article  Google Scholar 

  15. Stoik CD, Bohn MJ et al (2008) Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt Express 16(21):17039–17051

    Article  Google Scholar 

  16. Ferguson B, Zhang XC (2003) Materials for terahertz science and technology. Nat Mater 1(1):26–33

    Article  Google Scholar 

  17. Zheludev NI, Kivshar YS (2012) From metamaterials to metadevices. Nat Mater 11(11):917–924

    Article  CAS  Google Scholar 

  18. Lee SH, Choi J, Kim H et al (2013) Ultrafast refractive index control of a terahertz graphene metamaterial. Sci Rep 3:2135

    Article  Google Scholar 

  19. Chen HT, Padilla WJ, Cich MJ et al (2009) A metamaterial solid-state terahertz phase modulator. Nat Photon 3(3):148–151

    Article  CAS  Google Scholar 

  20. Zhou X, Yin X, Zhang T et al (2015) Ultrabroad terahertz bandpass filter by hyperbolic metamaterial waveguide. Opt Express 23(9):11657–11664

    Article  CAS  Google Scholar 

  21. Song ZQ, Zhao ZY, Zhao HW et al (2015) Teeter-totter effect of terahertz dual modes in c-shaped complementary split-ring resonators. J Appl Phys 118(4):043108

    Article  Google Scholar 

  22. Burnett MA, Fiddy MA (2016) Apex-angle-dependent resonances in triangular split-ring resonators. Appl Phys A 122: 65–1–65-4

  23. Azad AK, Taylor AJ, Smirnova E et al (2008) Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Appl Phys Lett 92(1):011119

    Article  Google Scholar 

  24. Du Q, Yang H, Lv T et al (2013) Multiband and polarization-independent left-handed metamaterial with cross fractal structure. Opt Commun 301–302(8):74–77

    Article  Google Scholar 

  25. Zhu Y, Hu X, Fu Y et al (2013) Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range. Sci Rep 3:02338-1–02338-7

    Google Scholar 

  26. Sheng Z, Varadan VV (2007) Tuning the effective properties of metamaterials by changing the substrate properties. J Appl Phys 101(1):014909-1–014909-7

    Article  Google Scholar 

  27. Song ZQ, Zhao ZY, Peng W et al (2015) Terahertz response of fractal meta-atoms based on concentric rectangular square resonators. J Appl Phys 118(19):759–762

    Article  Google Scholar 

  28. Chen XD, Grzegorczyk TM, BI W et al (2004) Robust method to retrieve the effective parameters of metamaterials. Phys Rev E 70:016608-1–016608-7

    Google Scholar 

  29. Su X, Ouyang C, Xu N et al (2015) Dynamic mode coupling in terahertz metamaterials. Sci Rep 5:10823

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 61307130) and the Joint Research Fund in Astronomy (Grants No. U1631112) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS) as well as the Innovation Program of Shanghai Municipal Education Commission (Grant No. 14YZ077). Z. Z. acknowledges the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. W.P. acknowledges the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04030000). Z. L. acknowledges the Project of Science and Technology Commission of Shanghai Municipality (Grant No. 16695840600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Zhao, Z., Song, Z. et al. The Influence of Element Deformation on Terahertz Mode Interaction in Split-Ring Resonator-Based Meta-Atoms. Plasmonics 12, 1391–1398 (2017). https://doi.org/10.1007/s11468-016-0398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0398-8

Keywords

Navigation