Skip to main content
Log in

Tunable Terahertz Filter-Integrated Quasi-Yagi Antenna Based on Graphene

Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a filter-integrated quasi-Yagi antenna (FIQYA) with quasi-independently tunable passband and front-to-back ratio is proposed by using graphene. The graphene at two ends of the coupled-line ring resonator mainly affects the impedance bandwidth while the front-to-back ratio of radiation patterns is attributed to the graphene-implanted open-circuited director. The bandwidth and front-to-back ratio tunability is accomplished by altering the complex conductivity of graphene controlled by chemical potential. For verification, a 2-THz FIQYA using both perfect electric conductor (PEC) and graphene with two different controllable chemical potentials (μ c1 and μ c2) is simulated. The simulated results show that the maximum tunable impedance bandwidth of the FIQYA is varied from 186 to 235 GHz without affecting the radiation patterns when μ c1 changes from 0 to 0.2 eV. The maximum tunable front-to-back ratio is changed from 11.7 to 15.4 dB while μ c2 is altering from 0 to 0.6 eV, maintaining an acceptable matching bandwidth in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Russer P, Fichtner N (2010) IEEE Microw Mag 11(3) 11256531:119–135

    Article  Google Scholar 

  2. Hu X (2013) Master thesis, University of Toronto, Toronto

  3. Serrano DC (2015) Master thesis, Technical University of Cartagena, Cartagena

  4. Tamagnone M, Gómez-Díaz JS, Mosig JR, Perruisseau-Carrier J (2012) J Appl Phys 112(114915):1–4

    Google Scholar 

  5. Chen P-Y, Argyropoulos C, Alù A (2013) IEEE Trans Antennas Propag 61(4):1528–1537

    Article  Google Scholar 

  6. Wang X-C, Zhao W-S, Hu J, Yin W-Y (2015) IEEE Trans Nanotechnol 14(1):62–69

    Article  CAS  Google Scholar 

  7. Danaeifar M, Granpayeh N, Mohammadi A, Setayesh A (2013) Appl Opt 52(22):68–72

    Article  CAS  Google Scholar 

  8. Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J, Álvarez-Melcón A (2014) IEEE Trans Nanotechnol 13(6):1145–1153

    Article  CAS  Google Scholar 

  9. He M-D, Wang K-J, Wang L, Li J-B, Liu J-Q, Huang Z-R, Wang L, Wang L, Hu W-D, Chen X (2014) Appl Phys Lett 105(081903):1–5

    Google Scholar 

  10. Wang B, Zhang X, Loh KP, Teng J (2014) J Appl Phys 115(213102):1–8

    Google Scholar 

  11. Wang Y, Chen Q, Shen X (2015) AIP Adv 5(077152):1–7

    Google Scholar 

  12. Yurchenko SO, Komarov KA, Pustovoit VI (2015) AIP Adv 5(057144):1–12

    Google Scholar 

  13. Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J, Álvarez-Melcón A (2013) IEEE Trans Microwave Theory Tech 61(12):4333–4344

    Article  Google Scholar 

  14. Hanson GW (2008) J Appl Phys 104(084314):1–5

    Google Scholar 

  15. Lovat G, Burghignoli P, Araneo R (2013) IEEE Trans Electromagn Compat 55(2):328–333

    Google Scholar 

  16. Araneo R, Burghignoli P, Lovat G, Hanson GW (2015) IEEE Trans Electromagn Compat 57(4):726–733

    Article  Google Scholar 

  17. Gomez-Diaz JS, Moldovan C, Capdevila S, Romeu J, Bernard LS, Magrez A, Ionescu AM, Perruisseau-Carrier J (2015) Nat Commun 6(6334):1–7

    Google Scholar 

  18. Gusynin VP, Sharapov SG, Carbotte JP (2007) J Phys 19(026222):1–25

    Google Scholar 

  19. Hanson GW (2008) IEEE Trans Antennas Propag 56(3):747–757

    Article  Google Scholar 

  20. Hanson GW (2008) J Appl Phys 103(064302):1–8

    Google Scholar 

  21. Zheng R, Gao D, Dong J (2016) IEEE Photon Technol Lett 28(6):645–648

    Article  CAS  Google Scholar 

  22. Wu Y, Hu B, Nan L, Liu Y (2015) Microw Opt Technol Lett 57(10):2355–2358

    Article  Google Scholar 

  23. Wu Y, Qu M, Jiao L, Liu Y, Ghassemlooy Z (2016) AIP Adv 6(065308):1–11

    Google Scholar 

  24. Cheng X, Yao Y, Qu S, Wu Y, Yu J, Chen X (2016) Electron Lett 52(7):494–496

    Article  Google Scholar 

  25. Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos LM, Muller DA, Guo J, Kim P, Hone J, Shepard KL, Dean CR (2013) Science 342(6158):614–617

    Article  CAS  PubMed  Google Scholar 

  26. Shi J, Wu X, Chen ZN, Qing X, Lin L, Chen J, Bao Z-H (2015) IEEE Antennas Wirel Propag Lett 14:1573–1576

    Article  Google Scholar 

  27. Luo Y, Chu Q-X (2016) IEEE Antennas Wirel Propag Lett 15:564–567

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (no. 2014CB339900) and National Natural Science Foundations of China (no. 61422103, no. 61327806, and no. 61201027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongle Wu.

Additional information

Yongle Wu and Meijun Qu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Qu, M., Jiao, L. et al. Tunable Terahertz Filter-Integrated Quasi-Yagi Antenna Based on Graphene. Plasmonics 12, 811–817 (2017). https://doi.org/10.1007/s11468-016-0328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0328-9

Keywords

Navigation