Skip to main content
Log in

Tunable Scattering Cancellation of Light Using Anisotropic Cylindrical Cavities

  • Published:
Plasmonics Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2018

This article has been updated

Abstract

Engineered core-shell cylinders are good candidates for applications in invisibility and cloaking. In particular, hyperbolic nanotubes demonstrate tunable ultra-low scattering cross section in the visible spectral range. In this work, we investigate the limits of validity of the condition for invisibility, which was shown to rely on reaching an epsilon near zero in one of the components of the effective permittivity tensor of the anisotropic metamaterial cavity. For incident light polarized perpendicularly to the scatterer axis, critical deviations are found in low-birefringent arrangements and also with high-index cores. We suggest that the ability of anisotropic metallodielectric nanocavities to dramatically reduce the scattered light is associated with a multiple Fano-resonance phenomenon. We extensively explore such resonant effect to identify tunable windows of invisibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 04 May 2018

    Though the online PDF and the print versions are correct, the web page of this paper unfortunately contained a mistake.

    The first author surname should read Díaz-Aviñó.

References

  1. Leonhardt U (2006) Science 312:1777

    Article  CAS  PubMed  Google Scholar 

  2. Pendry JB, Schurig D, Smith DR (2006) Science 312:1780

    Article  CAS  PubMed  Google Scholar 

  3. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Nat Photon 1:224

    Article  CAS  Google Scholar 

  4. Forouzeshfard MR, Farzad MH (2015) Plasmonics 10:1345

    Article  Google Scholar 

  5. Yu GX, Cao R, Luo M (2015) Optik 126:1990

    Article  Google Scholar 

  6. Alù A, Rainwater D, Kerkhoff A (2010) New J Phys 12:103028

    Article  CAS  Google Scholar 

  7. Ni Y, Gao L, Qiu CW (2010) Plasmonics 5:251

    Article  Google Scholar 

  8. Alu A, Engheta N (2005) Phys Rev E 72:016623

    Article  CAS  Google Scholar 

  9. Edwards B, Alu A, Silveirinha MG, Engheta N (2009) Phys Rev Lett 103:153901

    Article  CAS  PubMed  Google Scholar 

  10. Filonov DS, Slobozhanyuk AP, Belov PA, Kivshar YS (2012) Phys Status Solidi RRL 6:46

    Article  CAS  Google Scholar 

  11. Alu A, Engheta N (2008) Phys Rev Lett 100:113901

    Article  CAS  PubMed  Google Scholar 

  12. Tricarico S, Bilotti F, Vegni L, Eur J (2009) Opt Soc, Rapid Publ 4:09021

    Article  Google Scholar 

  13. Chen PY, Soric J, Alu A (2012) Adv Mater 24:OP281

    CAS  PubMed  Google Scholar 

  14. Mirzaei A, Miroshnichenko AE, Shadrivov IV, Kivshar YS (2015) Sci Rep 5:9574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim KH, No YS, Chang S, Choi JH, Park HG (2015) Sci Rep 5:16027. doi:10.1038/srep16027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Díaz-Aviñó C, Naserpour M, Zapata-Rodríguez CJ (2016). arXiv:1605.00030

  17. Bussey HE, Richmond JH (1975) IEEE Trans Antennas Propag 23:723

    Article  Google Scholar 

  18. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley

  19. Díaz-Aviñó C, Pastor D, Zapata-Rodríguez CJ, Naserpour M, Kotyński R, Miret JJ (2016) J Opt Soc Am B 33:116

    Article  CAS  Google Scholar 

  20. Johnson PB, Christy RW (1972) Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  21. Yeh P, Yariv A, Hong CS, Opt J (1977) Soc Am 67:423

    Article  Google Scholar 

  22. Chen HL, Gao L (2012) Phys Rev A 86:033825

    Article  CAS  Google Scholar 

  23. Chen HL, Gao L (2013) Opt Express 21:23619

    Article  CAS  PubMed  Google Scholar 

  24. Torrent D, Sánchez-Dehesa J (2009) Phys Rev Lett 103:064301

    Article  CAS  PubMed  Google Scholar 

  25. Kettunen H, Wallén H, Sihvola A (2015). Photonics 2:509

    Article  Google Scholar 

  26. Kidwai O, Zhukovsky SV, Sipe JE (2012) Phys Rev A 85: 053842

    Article  CAS  Google Scholar 

  27. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  28. Yeh P (1988) Optical waves in layered media. Wiley, New York

    Google Scholar 

  29. Elser J, Podolskiy VA, Salakhutdinov I, Avrutsky I (2007) Appl Phys Lett 90:191109

    Article  CAS  Google Scholar 

  30. Díaz-Aviñó C, Naserpour M, Zapata-Rodríguez CJ (2016) arXiv:1603.08317. http://dx.doi.org/10.1016/j.optcom.2016.06.081

  31. Ferrari L, Wu C, Lepage D, Zhang X, Liu Z (2015) Prog Quant Electron 40:1

    Article  Google Scholar 

  32. Zapata-Rodríguez CJ, Pastor D, Camps V, Caballero MT, Miret JJ (2011) J Nanophoton 5:051807

    Article  Google Scholar 

  33. Zapata-Rodríguez CJ, Pastor D, Caballero MT, Miret JJ (2012) Opt Commun 285:3358

    Article  CAS  Google Scholar 

  34. Miret JJ, Zapata-Rodríguez CJ (2010) J Opt Soc Am B 27(7): 1435

    Article  CAS  Google Scholar 

  35. Zapata-Rodríguez CJ, Miret JJ, Vuković S, Belić MR (2013) Opt Express 21:19113

    Article  CAS  PubMed  Google Scholar 

  36. Zapata-Rodríguez CJ, Pastor D, Miret JJ, Vuković S (2014) J Nanophoton 8:083895

    Article  Google Scholar 

  37. Zhu J (2008) Appl Phys Lett 92:241919

    Article  CAS  Google Scholar 

  38. Nickelson L, Bucinskas J (2012) Appl Phys A 109:883

    Article  CAS  Google Scholar 

  39. Rybin MV, Filonov DS, Belov PA, Kivshar YS, Limonov MF (2015) Sci Rep 5:8774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lukyanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) Nat Mater 9:707

    Article  CAS  Google Scholar 

  41. Fano U (1961) Phys Rev 124:1866

    Article  CAS  Google Scholar 

  42. Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Fatti ND, Vallée F, Brevet PF (2008) Phys Rev Lett 101:197401

    Article  CAS  PubMed  Google Scholar 

  43. Christ A, Ekinci Y, Solak HH, Gippius NA, Tikhodeev SG, Martin OJF (2007) Phys Rev B 76(R):201405

    Article  CAS  Google Scholar 

  44. Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI (2007) Phys Rev Lett 99:147401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) (TEC2014-53727-C2-1-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos J. Zapata-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Avi nó, C., Naserpour, M. & Zapata-Rodríguez, C.J. Tunable Scattering Cancellation of Light Using Anisotropic Cylindrical Cavities. Plasmonics 12, 675–683 (2017). https://doi.org/10.1007/s11468-016-0313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0313-3

Keywords

Navigation