Skip to main content

Advertisement

Log in

Tailoring Active Far-Infrared Resonator with Graphene Metasurface and Its Complementary

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Far-infrared part of electromagnetic spectrum and its technological details have been highly sought after due to its myriad applications including imaging, spectroscopy, industry control, and communication. However, lack of efficient components of electronic and photonic sources/detectors working in this particular spectrum has impeded its widespread application. One of the bottlenecks lies in the compact far-infrared polarization-sensitive resonator/modulator in compatible with pixel-detector for far-infrared spectroscopy. In this work, we demonstrate strong electric resonance response in perforated graphene sheet at this particular electromagnetic region. The results demonstrate inherently different natures for the strong electromagnetic response between graphene-based and metallic metamaterials. Unlike the metallic metamaterials relying on the geometrical inductance for magnetic response, the electric resonance caused by localized dipole/multipolar modes is found to be dominated in graphene and thus enabling sub-wavelength confinement of electromagnetic field. The Babinet’s principle is proposed to be applied for broadband far-infrared modulation and resonant filters design of graphene-based metamaterial. The active tunable electric resonance through electrostatic doping on the graphene-based patterns provides efficient route for compact biosensing, far-infrared imaging, and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97–105

    Article  CAS  Google Scholar 

  2. Fitch MJ, Osiander R (2004) Terahertz waves for communications and sensing. J Hopkins APL Tech Dig 25:348

    Google Scholar 

  3. Wei J, Olaya D, Karasik BS, Pereverzev SV, Sergeev AV, Gershenson ME (2008) Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat Nanotechnol 3:496–500

    Article  CAS  Google Scholar 

  4. Li l, Chen L, Zhu J, Freeman J, Dean P, Valavanis A, Davies AG, Linfield EH (2014) Terahertzfrequency quantum cascade lasers with > 1-Watt output power. Electron Lett 50:309–311

  5. Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen H, Taylor AJ, Han J, Zhang W (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151

    Article  Google Scholar 

  6. Chen H, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD (2006) Active terahertz metamaterial devices. Nature 444:597–600

  7. Singh R, Al-Naib IA, Koch M, Zhang W (2011) Sharp Fano resonances in THz metamaterials. Opt Express 19:6312–6319

    Article  Google Scholar 

  8. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1:41–48

    Article  CAS  Google Scholar 

  9. Shen N, Tassin P, Koschny T, Soukoulis CM (2014) Comparison of gold- and graphene-based resonant nanostructures for terahertz matamaterials and an ultrathin graphene-based modulator. Phys Rev B 90:115437

    Article  Google Scholar 

  10. Cao W, Singh R, Al-Naib IAI, He M, Taylor AJ, Zhang W (2012) Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt Lett 37:3366–3368

    Article  CAS  Google Scholar 

  11. Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, García de Abajo FJ (2013) Gated tunablity and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7:2388–2395

    Article  CAS  Google Scholar 

  12. Bao Q, Loh KP (2012) Graphene photonics, plasmonics and broadband optoelectronic devices. ACS Nano 6:3677–3694

    Article  CAS  Google Scholar 

  13. Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, García de Abajo FJ, Hillenbrand R, Koppens FHL (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487:77–81

    CAS  Google Scholar 

  14. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:751

    Article  Google Scholar 

  15. Gao W, Reichel K, Nickel DV, He X, Shi G, Vajtai R, Ajayan PM, Kono J, Mittleman DM, Xu Q (2014) High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett 14:1242–1248

    Article  CAS  Google Scholar 

  16. Wang L, Chen XS, Hu YB, Wang SW, Lu W (2015) Predictive of the quantum capacitance effect on the excitation of plasma waves in graphene transistors with scaling limit. Nanoscale 7:7284–7290

  17. Mousavi SH, Kholmanov I, Alici KB, Purtseladze D, Arju N, Tatar K, Fozdar DY, Suk JW, Hao Y, Khanikaev AB, Ruoff RS, Shvets G (2013) Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett 13:1111–1117

    Article  CAS  Google Scholar 

  18. Papasimakis N, Thongrattanasiri S, Zheludev NI, García de Abajo FJ (2013) The magnetic response of graphene split-ring metamaterials. Light Sci Appl 2:e78

    Article  Google Scholar 

  19. Rana F (2008) Graphene terahertz plasmon oscillators. IEEE Trans Nanotechnol 7:91–99

    Article  Google Scholar 

  20. Wang L, Chen XS, Hu WD, Yu AQ, Lu W (2013) The resonant tunability, enhancement, and damping of plasma waves in the two-dimensional electron gas plasmonic crystals at terahertz frequencies. Appl Phys Lett 102:243507

  21. Wang L, Chen XS, Lu W (2016) Intrinsic photo-conductance triggered by the plasmonic effect in graphene for terahertz detection. Nanotechnology 27:035205

  22. Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis CM (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351

    Article  CAS  Google Scholar 

  23. Wang L, Chen XS, Yu AQ, Zhang Y, Ding JY, Lu W (2014) Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors. Sci Rep 4:5470

  24. Lovera A, Gallinet B, Nordlander P, Martin OJF (2013) Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7:4527–4536

    Article  CAS  Google Scholar 

  25. Lassiter JB, Sobhani H, Knight MW, Mielczarek WS, Nordlander P, Halas NJ (2011) Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. Nano Lett 12:1058–1062

  26. Jung H, In C, Choi H, Lee H (2014) Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster. Sci Rep 4:5217

    CAS  Google Scholar 

  27. Wang L, Chen X, Yu A, Yang Z, Ding J, Lu W (2014) Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors. Sci Rep 4:5470

    CAS  Google Scholar 

  28. Ye J, Craciun MF, Koshino M, Russo S, Inoue S, Yuan H, Shimotani H, Morpurgo AF, Iwasa Y (2011) Accessing the transport properties of graphene and its multilayers at high carrier density PNAS 108:13002–13006

  29. Falcone F, Lopetegi T, Laso MAG, Baena JD, Bonache J, Beruete M (2004) Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett 93:197401

  30. Zentgraf T, Meyrath TP, Seidel A, Kaiser S, Giessen H (2007) Babinet’s principle for optical frequency metamaterials and nanoantennas Phys Rev B 76:033407

Download references

Acknowledgments

The authors acknowledge Dr. Jinhua Li from the Hong Kong Polytechnic University for valuable discussions, Prof. James Torley from University of Colorado at Colorado Springs for critical reading of the manuscript and support provided by the State Key Program for Basic Research of China (2013CB632705, 2011CB922004), the National Natural Science Foundation of China (10990104, 11334008, 61405230, and 61290301), and the Fund of Shanghai Science and Technology Foundation (13JC1408800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Wang, Xiaoshuang Chen or Quanjun Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chen, X., Cao, Q. et al. Tailoring Active Far-Infrared Resonator with Graphene Metasurface and Its Complementary. Plasmonics 12, 353–360 (2017). https://doi.org/10.1007/s11468-016-0271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0271-9

Keywords

Navigation