Skip to main content
Log in

Narrow-band enhanced absorption of monolayer graphene at near-infrared (NIR) sandwiched by dual gratings

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

One possibility of enhancing light absorption in monolayer graphene at near-infrared (NIR) wavelength region with grating structures is proposed and investigated. It is demonstrated that it is possible to achieve near-perfect absorption when a single monolayer graphene is sandwiched between two gratings with optimized geometric parameters at normal incidence for transverse electric (TE) polarization. By means of the rigorous coupled-wave analysis (RCWA), the effects of technological tolerances on the optical response of the structure by varying geometric parameters and incident angle are studied. The proposed photonic structure could be efficiently exploited as a building block for innovative optical absorbers or photodetectors in combination with active materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398

    Article  CAS  Google Scholar 

  2. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

    Article  CAS  Google Scholar 

  3. Xia F, Mueller T, Lin Y, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nat Nanotechnol 4(12):839–843

    Article  CAS  Google Scholar 

  4. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Article  CAS  Google Scholar 

  5. Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330

    Article  CAS  Google Scholar 

  6. Kim M, Lee S, Kim S (2015) Plasmon-induced transparency in coupled graphene gratings. Plasmonics 10:1557–1564

    Article  CAS  Google Scholar 

  7. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  8. Li HJ, Wang LL, Sun B, Huang ZR, Zhai X (2016) Plasmonics 11:87–93

    Article  CAS  Google Scholar 

  9. Zhu X, Yan W, Jepsen PU, Hansen O, Mortensen NA, Xiao S (2013) Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating. Appl Phys Lett 102(13):131101

    Article  Google Scholar 

  10. Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA, Heinz TF (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101(19):196405

    Article  Google Scholar 

  11. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  CAS  Google Scholar 

  12. Hu JH, Huang YQ, Duan XF, Wang Q, Zhang X, Wang J, Ren XM (2014) Enhanced absorption of graphene strips with a multilayer subwavelength grating structure. Appl Phys Lett 105(22):221113

    Article  Google Scholar 

  13. Jessica RP, Fan S (2014) Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1(4):347–353

    Google Scholar 

  14. Liu JT, Liu NH, Li J, Li XJ, Huang JH (2012) Enhanced absorption of graphene with one-dimensional photonic crystal. Appl Phys Lett 101(5):052104

    Article  Google Scholar 

  15. Pirruccio G, Martín Moreno L, Lozano G, Gómez Rivas J (2013) Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7(6):4810–4817

    Article  CAS  Google Scholar 

  16. Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews AM, Schrenk W, Strasser G, Mueller T (2012) Microcavity-integrated graphene photodetector. Nano Lett 12(6):2773–2777

    Article  CAS  Google Scholar 

  17. Miloua R, Kebbab Z, Chiker F, Hadraoui M, Sahraoui K, Bouzidi A, Medlesa M, Mathieu C, Benramdane N (2014) Peak, multi-peak and broadband absorption in graphene-based one-dimensional photonic crystal. Opt Commun 330:135–139

    Article  CAS  Google Scholar 

  18. Gan X, Mak KF, Gao Y, You Y, Hatami F, Hone J, Heinz TF, Englund D (2012) Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett 12(11):5626–5631

    Article  CAS  Google Scholar 

  19. Echtermeyer TJ, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV, Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS (2011) Strong plasmonic enhancement of photovoltage in graphene. Nat Commun 2:458

    Article  CAS  Google Scholar 

  20. Zhao B, Zhang ZM (2015) Strong plasmonic coupling between graphene ribbon array and metal gratings. ACS Photonics 2(11):1611–1618

    Article  CAS  Google Scholar 

  21. Zhao B, Zhao JM, Zhang ZM (2015) Resonance enhanced absorption in a graphene monolayer using deep metal gratings. J Opt Soc Am B 32(6):1176–1185

    Article  Google Scholar 

  22. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

    Article  Google Scholar 

  23. Moharam MG, Grann EB, Pommet DA, Gaylord TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12(5):1068–1076

    Article  Google Scholar 

  24. Iizuka H, Engheta N, Fujikawa H, Sato K, Takeda Y (2010) Switching capability of double-sided grating with horizontal shift. Appl Phys Lett 97(5):053108

    Article  Google Scholar 

  25. Yuan HM, Yang HN, Liu PZ, Jiang XQ, Sun XD (2014) Mode manipulation and near-THz absorptions in binary grating-graphene layer structures. Nanoscale Res Lett 9(1):90

    Article  Google Scholar 

  26. Wang LP, Lee BJ, Wang XJ, Zhang ZM (2009) Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities. Int J Heat Mass Tranf 52:3024–3031

    Article  CAS  Google Scholar 

  27. Wang LP, Basu S, Zhang ZM (2012) Direct measurement of thermal emission from a Fabry-Perot cavity resonator. J Heat Transf 134(7):072701

    Article  Google Scholar 

  28. Vincenti MA, de Ceglia D, Grande M, D’Orazio A, Scalora M (2014) Third-harmonic generation in one-dimensional photonic crystal with graphene-based defect. Phys Rev B 89:165139

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Grant No. 61203211), the Six Major Talent Peak expert of Jiangsu province (2015-XXRJ-014), the Natural Science Foundation of the Jiangsu Province (Grant No. BK20141483), and the Open Laboratory Project of NUIST (15KF-088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaige Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Zhang, H. & Bu, L. Narrow-band enhanced absorption of monolayer graphene at near-infrared (NIR) sandwiched by dual gratings. Plasmonics 12, 271–276 (2017). https://doi.org/10.1007/s11468-016-0260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0260-z

Keywords

Navigation