Skip to main content
Log in

Plasmon-Induced Transparency in a Surface Plasmon Polariton Waveguide with a Right-Angled Slot and Rectangle Cavity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The phenomenon of plasmon-induced transparency (PIT) is realized a in surface plasmon polariton waveguide at near-infrared frequencies. The right-angled slot and rectangle cavity placed inside one of the metallic claddings are respectively utilized to obtain bright and dark modes in a typical bright-dark mode waveguide. A PIT transmission spectrum of the waveguide is generated due to the destructive interference between the bright and dark modes, and the induced transparency peak can be manipulated by adjusting the size of the bright and dark resonators and the coupling distance between them. Subsequently, spectral splitting based on the PIT structure is studied numerically and analytically. Simulation results indicate that double electromagnetically induced transparency (EIT)-like peaks emerge in the broadband transmission spectrum by adding another rectangle cavity, and the corresponding physical mechanism is presented. Our novel plasmonic structure and the findings pave the way for new design and engineering of highly integrated optical circuit such as nanoscale optical switching, nanosensor, and wavelength-selecting nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77(2):633

    Article  CAS  Google Scholar 

  2. Harris SE (2008) Electromagnetically induced transparency. Phys Today 50(7):36–42

    Article  Google Scholar 

  3. Boller KJ, Imamoğlu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593

    Article  CAS  Google Scholar 

  4. Phillips DF, Fleischhauer A, Mair A, Walsworth RL, Lukin MD (2001) Storage of light in atomic vapor. Phys Rev Lett 86(5):783

    Article  CAS  Google Scholar 

  5. Papasimakis N, Fedotov VA, Zheludev NI, Prosvirnin SL (2008) Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett 101(25):253903

    Article  CAS  Google Scholar 

  6. Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104(24):243902

    Article  Google Scholar 

  7. Han Z, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19(4):3251–3257

    Article  CAS  Google Scholar 

  8. Totsuka K, Kobayashi N, Tomita M (2007) Slow light in coupled-resonator-induced transparency. Phys Rev Lett 98(21):213904

    Article  Google Scholar 

  9. Zhang J, Xiao S, Jeppesen C, Kristensen A, Mortensen NA (2010) Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt Express 18(16):17187–17192

    Article  CAS  Google Scholar 

  10. Tassin P, Zhang L, Koschny T, Economou EN, Soukoulis CM (2009) Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 102(5):053901

    Article  CAS  Google Scholar 

  11. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Giessen H (2009) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10(4):1103–1107

    Article  Google Scholar 

  12. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8(9):758–762

    Article  CAS  Google Scholar 

  13. Boyd RW, Gauthier DJ (2006) Photonics: transparency on an optical chip. Nature 441(7094):701–702

    Article  CAS  Google Scholar 

  14. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics—the wave of chip-scale device technologies. Mater Today 9:20–27

    Article  CAS  Google Scholar 

  15. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511

    Article  CAS  Google Scholar 

  16. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  17. Zentgraf T, Zhang S, Oulton RF, Zhang X (2009) Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems. Phys Rev B 80(19):195415

    Article  Google Scholar 

  18. Neutens P, Van Dorpe P, De Vlaminck I, Lagae L, Borghs G (2009) Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nat Photonics 3(5):283–286

    Article  CAS  Google Scholar 

  19. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  20. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401

    Article  Google Scholar 

  21. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903

    Article  CAS  Google Scholar 

  22. Zhang Z, Zhang L, Li H, Chen H (2014) Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl Phys Lett 104(23):231114

    Article  Google Scholar 

  23. Hu F, Yi H, Zhou Z (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36(8):1500–1502

    Article  Google Scholar 

  24. Chen J, Li Z, Yue S, Xiao J, Gong Q (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12(5):2494–2498

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61505052, 11074069, 61176116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, DM., Zhai, X., Wang, LL. et al. Plasmon-Induced Transparency in a Surface Plasmon Polariton Waveguide with a Right-Angled Slot and Rectangle Cavity. Plasmonics 11, 1151–1155 (2016). https://doi.org/10.1007/s11468-015-0153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0153-6

Keywords

Navigation