Skip to main content
Log in

Electric Field Enhancement Around Gold Tip Optical Antenna

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper provides a new design of gold tip optical antenna based on a specific geometry, and then the change of enhancement of the electric field of plane wave laser excitation with 400 to 700 nm around of the optical antenna are simulated. Changing the geometry of optical antenna includes creating circular gratings with the periods 200 and 300 nm on the shaft of antenna. With the exerting of laser light to the place of these gratings, the distribution of enhancement of the electric field in a plane perpendicular to the shaft has been acquired. Finally, the optimized value for the maximum enhancement at the period of 293 nm is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Novotny L, Bharadwaj P, Deutsch B (2009) Optical antennas. Adv Opt Photon 1(3):438–483

    Article  Google Scholar 

  2. Behr N., Raschke M. B.(2008) Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement //The Journal of Physical Chemistry C. – 2008. – Т. 112. – №. 10. – С. 3766-3773

  3. Liao PF, Wokaun A (1982) Lightning rod effect in surface enhanced Raman scattering. J Chem Phys 76(1):751–752

  4. Hartschuh A. Tip‐enhanced near‐field optical microscopy //Angewandte Chemie International Edition. – 2008. – Т. 47. – №. 43. – С. 8178-8191

  5. Giannini V, S’anchez-Gil JA (2008) Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas. Opt Lett 33:899–901

    Article  CAS  Google Scholar 

  6. Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) Adiabatic tip-plasmon focusing for nano-Raman Spectroscopy. J Phys Chem Lett 24:3427–3432

  7. Taflove SA (1980) Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems. IEEE Trans Electromagn Compat 22(3):191–202

    Article  Google Scholar 

  8. Taflove A, Brodwin ME (1975) Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations”. IEEE Trans Microwave Theory Tech 23(8):623–630

  9. de Oliveira RMS, Sobrinho CLSS (2009) Computational Environment for Simulating Lightning Strokes in a Power Substation by Finite-Difference Time-Domain Method. IEEE Trans Electromagn Compat 51(4):995–1000

    Article  Google Scholar 

  10. Chaudhury B, Boeuf JP (2010) Computational Studies of Filamentary Pattern Formation in a High Power Microwave Breakdown Generated Air Plasma”. IEEE Trans Plasma Sci 38(9):2281–2288

    Article  Google Scholar 

  11. Moxley FI III, Byrnes T, Fujiwara F, Dai W (2012) A generalized finite-difference time-domain quantum method for the N-body interacting Hamiltonian”. Comput Phys Commun 183(11):2434–2440

    Article  CAS  Google Scholar 

  12. Moxley FI III, Chuss DT, Dai W (2013) A generalized finite-difference time-domain scheme for solving nonlinear Schrödinger equations”. Comput Phys Commun 184(8):1834–1841

    Article  CAS  Google Scholar 

  13. Frederick M. et al (2014) Contemporary Mathematics: Mathematics of Continuous and Discrete Dynamical Systems. American Mathematical Society, ISBN 978-0-8218-9862-8

  14. Siriwitpreecha A, Rattanadecho P, Wessapan T (2013) The influence of wave propagation mode on specific absorption rate and heat transfer in human body exposed to electromagnetic wave. Int J Heat Mass Transfer 65:423–434

    Article  Google Scholar 

  15. Mollai S, Javadzadeh SMH, Shishegar AA, Banai A, Farzaneh F, Fardmanesh M (2013) Analysis of Nonlinearities in Superconducting Microstrip Straight Bends; FDTD Method in Comparison with Nonlinear Circuit Modeling. J Supercond Nov Magn 26:1827–1830

    Article  CAS  Google Scholar 

  16. Okazaki Y, Suzuki K, Enomoto Y (1999) Superconducting microstrip resonator investigated by FDTD electromagnetic field simulator. IEEE Trans Appl Supercond 9((2):3034–3037

    Article  Google Scholar 

  17. Zhang L, Yu T-B, Qu D-X and Xie X-G Analysis of Microstrip Circuit by Using Finite Difference Time Domain (FDTD) Method, Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

  18. Yee K (1966) Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag AP-14:302–307

    Google Scholar 

  19. Gerton JM, Wade LA, Lessard GA, Ma Z, Quake SR (2004) Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Phys Rev Lett 93(18):180801

  20. Martin YC, Hamann HF, Wickramasinghe HK (2001) Strength of the electric field in apertureless near-field optical microscopy. J Appl Phys 89:5774–5778

    Article  CAS  Google Scholar 

  21. Novotny L, Hecht B (2012) Principles of nano-optics. – Cambridge university press

  22. Kharintsev SS, et al (2013) Plasmonic optical antenna design for performing tip-enhanced Raman spectroscopy and microscopy //Journal of Physics D: Applied Physics. – 2013. – Т. 46. – №. 14. – С. 145501

Download references

Acknowledgments

The authors wish to thank Prof. M. Kh. Salakhov for the helpful discussions. We are also grateful to the Department of Optics and Nanophotonics, Kazan Federal University for giving us access to their equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Zohrabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohrabi, M., Mohebbifar, M.R. Electric Field Enhancement Around Gold Tip Optical Antenna. Plasmonics 10, 887–892 (2015). https://doi.org/10.1007/s11468-014-9876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9876-z

Keywords

Navigation