Skip to main content
Log in

Plasmonic Effect of a Nanoshell Dimer with Different Gain Materials

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Though the plasmonic property for a passive nanoparticle dimer has been studied widely, the performance of a nanoparticle dimer with gain material is still inexplicit to our knowledge. Therefore, in this paper, we focus on the plasmonic effect of a nanoshell dimer, with its core filled with different gain materials, under a polarized plane wave excitation using a three-dimensional finite difference time domain method. It is shown that the gain materials in the core of the nanoshell can compensate the intrinsic absorption of the metal shell, resulting in a local energy enhancement in the junction of the active nanoshell dimer. The physics is supported by the detailed energy distribution of the active nanoshell dimer in each geometry region. It is found that the plasmonic coupling between two active nanoshell particles is more compact than the case of passive ones. The influence of shell thickness on the interaction between two adjacent active nanoshells is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  2. Halas NJ (2010) Plasmonics: an emerging field fostered by nano letters. Nano Lett 10:3816–3822

    Article  CAS  Google Scholar 

  3. Lin WC, Liao LS, Chen YH, Chang HC, Tsai DP, Chiang HP (2011) Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 6:201–206

    Article  CAS  Google Scholar 

  4. Wen X, Xi Z, Jiao X, Yu W, Xue G, Zhang D, Lu Y, Wang P, Blair S, Ming H (2013) Plasmonic coupling effect in Ag nanocap–nanohole pairs for surface-enhanced Raman scattering. Plasmonics 8:225–231

    Article  CAS  Google Scholar 

  5. Dillu V, Sinha R (2013) Surface plasmon polariton band gap-enabled plasmonic Mach–Zehnder interferometer: design, analysis, and application. Plasmonics. doi:10.1007/s11468-013-96 52-5

    Google Scholar 

  6. Noginov M, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo B, Drachev V, Shalaev V (2006) Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt Lett 31:3022–3024

    Article  CAS  Google Scholar 

  7. Noginov M, Zhu G, Mayy M, Ritzo B, Noginova N, Podolskiy V (2008) Stimulated emission of surface plasmon polaritons. Phys Rev Lett 101:226806

    Article  CAS  Google Scholar 

  8. Noginov M, Podolskiy V, Zhu G, Mayy M, Bahoura M, Adegoke J, Ritzo B, Reynolds K (2008) Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt Express 16:385–1392

    Article  Google Scholar 

  9. Grandidier J, Francs GCD, Massenot S, Bouhelier A, Markey L, Weeber JC, Finot C, Dereux A (2009) Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett 9:2935–2939

    Article  CAS  Google Scholar 

  10. Gather MC, Meerholz K, Danz N, Leosson K (2010) Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat Photon 4:457–461

    Article  CAS  Google Scholar 

  11. Li ZY, Xia Y (2010) Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett 10:243–249

    Article  Google Scholar 

  12. Zhang H, Zhou J, Zou W, He M (2012) Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser. J Appl Phys 112:074309

    Article  Google Scholar 

  13. Klimov VI (2003) Nanocrystal quantum dots. Los Alamos Sci 28:214–220

    CAS  Google Scholar 

  14. Klimov VI, Ivanov SA, Nanda J, Achermann M, Bezel I, McGuire JA, Piryatinski A (2007) Single-exciton optical gain in semiconductor nanocrystals. Nature 447:441–446

    Article  CAS  Google Scholar 

  15. Ambati M, Nam SH, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Observation of stimulated emission of surface plasmon polaritons. Nano Lett 8:3998–4001

    Article  CAS  Google Scholar 

  16. Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  17. Li W, Camargo PH, Lu X, Xia Y (2008) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett 9:485–490

    Article  Google Scholar 

  18. McMahon JM, Gray SK, Schatz GC (2010) Optical properties of nanowire dimers with a spatially nonlocal dielectric function. Nano Lett 10:3473–3481

    Article  CAS  Google Scholar 

  19. Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3:2776–2788

    Article  CAS  Google Scholar 

  20. Alber I, Sigle W, Müller S, Neumann R, Picht O, Rauber M, Aken PAV, Toimil-Molares ME (2011) Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers. ACS Nano 5:9845–9853

    Article  CAS  Google Scholar 

  21. Jackson J, Westcott S, Hirsch L, West J, Halas N (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett 82:257

    Article  CAS  Google Scholar 

  22. Barhoumi A, Zhang D, Tam F, Halas NJ (2008) Surface-enhanced Raman spectroscopy of DNA. J Am Chem Soc 130:5523–5529

    Article  CAS  Google Scholar 

  23. Lin A, Hirsch L, Lee MH, Barton J, Halas NJ, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40

    Article  Google Scholar 

  24. Loo C, Lowery A, Halas NJ, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    Article  CAS  Google Scholar 

  25. Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7:2854–2858

    Article  CAS  Google Scholar 

  26. Kittel C, McEuen P (1986) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  27. Kawata S (2001) Near-field optics and surface plasmon polaritons. Springer, Berlin

    Book  Google Scholar 

  28. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  29. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164

    Article  CAS  Google Scholar 

  30. Chau YF, Yeh HH, Tsai DP (2008) Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl Opt 47:5557–5561

    Article  CAS  Google Scholar 

  31. Kunz KS, Luebbers RJ (1993) The finite difference time domain method for electromagnetics. CRC, Boca Raton

    Google Scholar 

  32. Nordlander P, Oubre C, Prodan E, Li K, Stockman M (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899–903

    Article  CAS  Google Scholar 

  33. Payne SA, Chase LL, Smith LK, Kway WL, Krupke WF (1992) Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+. IEEE J Quantum Electron 28:2619–2630

    Article  CAS  Google Scholar 

  34. DeLoach LD, Payne SA, Chase LL, Smith LK, Kway WL, Krupke WF (1993) Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications. IEEE J Quantum Electron 19:1179–1191

    Article  Google Scholar 

  35. Kenyon AJ, Chryssou CE, Pitt CW, Shimizu-Iwayama T, Hole DE, Sharma N, Humphreys CJ (2002) Luminescence from erbium-doped silicon nanocrystals in silica: excitation mechanisms. J Appl Phys 91:367–374

    Article  CAS  Google Scholar 

  36. Pisignano D, Anni M, Gigli G, Cingolani R, Zavelani-Rossi M, Lanzani G, Barbarella G, Favaretto L (2002) Amplified spontaneous emission and efficient tunable laser emission from a substituted thiophene-based oligomer. Appl Phys Lett 81:3534–3536

    Article  CAS  Google Scholar 

  37. Digonnet MJF (2001) Rare-earth-doped fiber lasers and amplifiers. CRC, New York

    Book  Google Scholar 

  38. Griffiths DJ, College R (1999) Introduction to electrodynamics. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant nos. 10974025 and 61137005) and the Fundamental Research Funds for the Central Universities of China (Grant nos. DUT13RCn86 and DUT13LK21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Pan, S., Guo, Y. et al. Plasmonic Effect of a Nanoshell Dimer with Different Gain Materials. Plasmonics 9, 1463–1469 (2014). https://doi.org/10.1007/s11468-014-9765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9765-5

Keywords

Navigation