Skip to main content
Log in

Synthesis of SERS-Active Stable Anisotropic Silver Nanostructures Constituted by Self-Assembly of Multiple Silver Nanopetals

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have synthesized anisotropic flower-like sliver nanostructures with multiple silver nanopetal-like structures, which are found to be protruding from the core body, in large scale, using single step galvanic reaction of ferrocene (FeCp2) with silver nitrate in presence of poly(vinyl pyrrolidone). The non-uniformly distributed multiple petal-like structures are found to be self-assembled by stacking layer by layer to form the anisotropic flower-like silver nanostructures. These anisotropic silver nanostructures constitute an active substrate material for surface-enhanced Raman scattering, which was confirmed from representative experiments using Rhodamine 6G and melamine (2,4,6-triamino-1,3,5-triazine) as probe molecules. Moreover, the stability of the synthesized AgNS has also been investigated. The results suggested that these AgNS exhibited excellent stability even after 1 month of storage and even after 3 months they show surface-enhanced Raman scattering effect. Therefore, our study exhibits highly stable silver nanostructures with unique optical properties. We believe this synthetic route for the formation of self-assembled anisotropic silver nanostructures can be a general synthetic platform to fabricate metal nanostructures with complex morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kundu S (2013) J Mater Chem C 1:831

    Article  CAS  Google Scholar 

  2. Zhang F, Braun GB, Shi YF, Zhang YC, Sun XH, Reich NO, Zhao DY, Stucky G (2010) J Am Chem Soc 132:2850

    Article  CAS  Google Scholar 

  3. Gude K, Narayanan R (2010) J Phys Chem C 114:6356

    Article  CAS  Google Scholar 

  4. Li YN, Wu YL, Ong BS (2005) J Am Chem Soc 127:3266

    Article  CAS  Google Scholar 

  5. Tian ZQ, Ren B, Li JF, Yang ZL (2007) Chem Commun 34:3514

    Article  Google Scholar 

  6. Saha A, Basiruddin SK, Sarkar R, Pradhan N, Jana NR (2009) J Phys Chem C 113:18492

    Article  CAS  Google Scholar 

  7. Horiuchi Y, Shimada M, Kamegawa T, Mori KJ (2009) Mater Chem 19:6745

    Article  CAS  Google Scholar 

  8. Atwater HA, Polman A (2010) Nat Mater 9:865

    Article  CAS  Google Scholar 

  9. Kumar PS, Pastoriza-Santos I, Rodriguez-Gonzalez B, Garcia de Abajo FJ, Liz-Marzán LM (2008) Nanotechnology 19:01506

    Google Scholar 

  10. Mohanty A, Garg N, Jin RC (2010) Angew Chem Int Ed 49:4962

    Article  CAS  Google Scholar 

  11. Zhang H, Xia XH, Li WY, Zeng J, Dai YQ, Yang DR, Xia YN (2010) Angew Chem Int Ed 49:5296

    Article  CAS  Google Scholar 

  12. Rodriguez-Lorenzo L, Alvarez-Puebla RA, de Abajo FJG, Liz-Marzán LM (2010) J Phys Chem C 114:7336

    Article  CAS  Google Scholar 

  13. Allgeyer ES, Pongan A, Browne M, Mason MD (2009) Nano Lett 9:3816

    Article  CAS  Google Scholar 

  14. Bratlie KM, Lee H, Komvopoulos K, Yang PD, Somorjai GA (2007) Nano Lett 7:3097

    Article  CAS  Google Scholar 

  15. Hong LJ, Li Q, Lin H, Li YA (2009) Mater Res Bull 44:1201

    Article  CAS  Google Scholar 

  16. Tang SC, Meng XK, Wang CC, Cao ZH (2009) Mater Chem Phys 114:842

    Article  CAS  Google Scholar 

  17. Jena BK, Mishra BK, Bohidar S (2009) J Phys Chem C 113:14753

    Article  CAS  Google Scholar 

  18. Sahoo PK, Kalyan Kamal SS, Jagadeesh Kumar T, Sreedhar B, Singh AK, Srivastava SK (2009) Def Sci J 59:447

    Article  CAS  Google Scholar 

  19. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) J Phys Chem B 109:13857

    Article  CAS  Google Scholar 

  20. Sharma J, Imae T (2009) J Nanosci Nanotechnol 9:19

    Article  CAS  Google Scholar 

  21. Nezhad MRH, Aizawa M, Porter LA, Ribbe AE, Buriak JM (2005) Small 1:1076

    Article  CAS  Google Scholar 

  22. Sławin’ski GW, Zamborini FP (2007) Langmuir 23:10357

    Article  Google Scholar 

  23. Lee C-L, Tseng TM, Wu RB, Yang KL (2008) Nanotechnology 19:215709

    Article  Google Scholar 

  24. Sharma J, Tai Y, Imae T (2008) J Phys Chem C 112:17033

    Article  CAS  Google Scholar 

  25. Lu X, Chen J, Skrabalak SE, Xia Y (2007) J Nanoeng Nanosyst 221:1

    Google Scholar 

  26. Vasilic R, Viyannalage LT, Dimitrov N (2006) J Electrochem Soc 153:C648

    Article  CAS  Google Scholar 

  27. Viyannalage LT, Vasilic R, Dimitrov N (2007) J Phys Chem C 111:4036

    Article  CAS  Google Scholar 

  28. Bansal V, Jani H, Plessis JD, Coloe PJ, Bhargava SK (2008) Adv Mater 20:717

    Article  CAS  Google Scholar 

  29. Dryfe RAW, Walter EC, Penner RM (2004) Chem Phys Chem 5:1879

    CAS  Google Scholar 

  30. Dryfe RAW, Simm AO, Kralj B (2003) J Am Chem Soc 125:13014

    Article  CAS  Google Scholar 

  31. Katz E, Willner I (2004) Angew Chem Int Ed 43:6042

    Article  CAS  Google Scholar 

  32. Courty A, Henry A-I, Goubet N, Pileni M-P (2007) Nat Mater 6:900

    Article  CAS  Google Scholar 

  33. Linh Tran M, Centeno SP, Hutchison JA, Ngelkamp HE, Liang D, Van Tendeloo G, Sels BF, Hofkens J, Uji-i H (2008) J Am Chem Soc 130:17240

    Article  Google Scholar 

  34. Liang H, Li Z, Wang W, Wu Y, Xu H (2009) Adv Mater 21:4614

    Article  CAS  Google Scholar 

  35. Wei H, Reyes-Coronado A, Nordlander P, Aizpurua J, Xu H (2009) ACS Nano 4:2649

    Article  Google Scholar 

  36. Yang Y, Matsubara S, Xiong L, Hayakawa T, Nogami M, Phys J (2007) Chem C 111:9095

    CAS  Google Scholar 

  37. Sun Y, Xia Y (2002) Science 298:2176

    Article  CAS  Google Scholar 

  38. Desmonda C, Tai Y (2010) International Conference on Enabling Science and Nanotechnology (ESciNano). KLCC, Kuala Lumpur

    Google Scholar 

  39. Said M, Máca F, Kambe K, Scheffler M (1988) Physical Review B (Rapid Communication) 38:8505

    Article  CAS  Google Scholar 

  40. Wang L, Guo SJ, Hu XG, Dong SJ (2008) Electrochem Commun 10:95

    Article  CAS  Google Scholar 

  41. Guzel R, Ustundag Z, Eski H, Keskin S, Taner B, Durgun ZG, Turan AAI, Solak AO (2010) J Colloid Interface Sci 351:35

    Article  Google Scholar 

  42. Jeon SH, Xu P, Zhang B, Mack NH, Tsai H, Chiang LY, Wang H-L (2011) J Mater Chem 21:2550

    Article  CAS  Google Scholar 

  43. Washio Y, Xiong Y, Yin Y, Xia Y (2006) Adv Mater 18:1745

    Article  CAS  Google Scholar 

  44. Hidebrandt P, Stockburger M (1984) J Phys Chem 88:5935

    Article  Google Scholar 

  45. Michaels AM, Nirmal M, Brus LE (1999) J Am Chem Soc 121:9932

    Article  CAS  Google Scholar 

  46. He L, Liu Y, Lin M, Awika J, Ledoux DR, Li H, Mustapha A (2008) Sens & Instrumen Food Qual 2:66

    Article  Google Scholar 

  47. Koglin E, Kip BJ, Meier RJ (1996) J Phys Chem 100:5078

    Article  CAS  Google Scholar 

  48. Du X, Chu H, Huang Y, Zhao Y (2010) Appl Spectrosc 64:781

    Article  CAS  Google Scholar 

  49. Zhang XF, Zou MQ, Qi XH, Liu F, Zhu XH, Zhao BH (2010) J Raman Spectrosc 41:1365

    CAS  Google Scholar 

  50. Zhang B, Xu P, Xie X, Wei H, Li Z, Mack NH, Han X, Xu H, Wang H-L (2011) J Mater Chem 21:2495

    Article  CAS  Google Scholar 

  51. Liu T, Li D, Yang D, Jiang M (2011) Langmuir 27:6211

    Article  CAS  Google Scholar 

  52. Pastoriza-Santos I, Liz-Marzan LM (2002) Langmuir 18:2888

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Bing-Joe Hwang of NTUST for the support of SERS experiments, Professor Thomas C. K. Yang for the support of XRD instrument and NTUST for the support of TEM and SEM instruments. This study was funded by the National Science Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yian Tai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, S., Desmonda, C. & Tai, Y. Synthesis of SERS-Active Stable Anisotropic Silver Nanostructures Constituted by Self-Assembly of Multiple Silver Nanopetals. Plasmonics 9, 485–492 (2014). https://doi.org/10.1007/s11468-013-9646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9646-3

Keywords

Navigation