Skip to main content
Log in

Optical Properties of Noncontinuous Gold Shell Engineered on Silica Mesosphere

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The optical properties of individual noncontinuous shells with different gold coverage are investigated by the single-particle dark field scattering measurements and single-particle surface-enhanced Raman scattering (SERS) measurements at different excitation wavelengths. By controlling the growth of gold seeds, multi-metallic nanogaps/crevices with different optical responses are assembled on silica mesospheres forming noncontinuous shells that can be confirmed through the transmission electron microscope images. We find the surface plasmon resonance of single shell red-shifts from 510 to 680 nm with the increase of gold coverage. At the excitation of 532 and 785 nm, the best enhancements about 2.0 × 105 and 1.1 × 107 are obtained on spheres with ∼60 and 83 % gold coverage, respectively. The weak polarization-dependent SERS indicates that the enhancement is from the multi-gaps on single noncontinuous shell. This optical tunable and SERS active noncontinuous gold shell can be applied in biosensing, ultra trace detection, and molecule analysis needing multi-wavelengths excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  2. Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3:127–150

    Article  CAS  Google Scholar 

  3. Halas NJ (2010) Plasmonics: an emerging field fostered by Nano Letters. Nano Lett 10:3816–3822

    Article  CAS  Google Scholar 

  4. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444–5454

    Article  CAS  Google Scholar 

  5. Shegai T, Li ZP, Dadosh T, Zhang Z, Xu HX, Haran G (2008) Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer. Proc Natl Acad Sci U S A 105:16448–16453

    Article  CAS  Google Scholar 

  6. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia YN (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192

    Article  CAS  Google Scholar 

  7. Morton SM, Silverstein DW, Jensen L (2011) Theoretical studies of plasmonics using electronic structure methods. Chem Rev 111:3962–3994

    Article  CAS  Google Scholar 

  8. Mulvihill MJ, Ling XY, Henzie J, Yang PD (2009) Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J Am Chem Soc 132:268–274

    Article  Google Scholar 

  9. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  10. Xu HX, Bjerneld EJ, Käll M, Borjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  11. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  12. Fan M, Andrade GF, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25

    Article  CAS  Google Scholar 

  13. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, De Wu Y, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  Google Scholar 

  14. Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  CAS  Google Scholar 

  15. Xu HX, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324

    Article  CAS  Google Scholar 

  16. Le Ru EC, Etchegoin PG (2012) Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 63:65–87

    Article  Google Scholar 

  17. Fleischmann M, Hendra PJ, Mcquillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  18. Wang H, Levin CS, Halas NJ (2005) Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J Am Chem Soc 127:14992–14993

    Article  CAS  Google Scholar 

  19. Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707–718

    Article  CAS  Google Scholar 

  20. Gunnarsson L, Bjerneld EJ, Xu HX, Petronis S, Kasemo B, KaLl M (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl Phys Lett 78:802–804

    Article  CAS  Google Scholar 

  21. Chen Z, Zhan P, Dong W, Li YY, Tang CJ, Min NB, Wang ZL (2010) Bottom-up fabrication approaches to novel plasmonic materials. Chin Sci Bull 55:2600–2607

    Article  Google Scholar 

  22. Winkler K, Kaminska A, Wojciechowski T, Holyst R, Fialkowski M (2011) Gold micro-flowers: one-step fabrication of efficient, highly reproducible surface-enhanced Raman spectroscopy platform. Plasmonics 6:697–704

    Article  CAS  Google Scholar 

  23. Halas NJ (2005) Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull 30:362–367

    Article  CAS  Google Scholar 

  24. Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37:898–911

    Article  CAS  Google Scholar 

  25. Xu BB, Ma XY, Rao YY, Dong J, Qian WP (2011) Plasmonic biosensors and nanoprobes based on gold nanoshells. Chin Sci Bull 56:3234–3241

    Article  CAS  Google Scholar 

  26. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  27. Oldenburg SJ, Westcott SL, Averitt RD, Halas NJ (1999) Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J Chem Phys 111:4729–4736

    Article  CAS  Google Scholar 

  28. Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci U S A 101:17930–17935

    Article  CAS  Google Scholar 

  29. Levin CS, Bishnoi SW, Grady NK, Halas NJ (2006) Determining the conformation of thiolated poly (ethylene glycol) on Au nanoshells by surface-enhanced Raman scattering spectroscopic assay. Anal Chem 78:3277–3281

    Article  CAS  Google Scholar 

  30. Han H, Fang Y, Li ZP, Xu HX (2008) Tunable surface plasmon resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation. Appl Phys Lett 92:023116–023118

    Article  Google Scholar 

  31. Major KJ, De C, Obare SO (2009) Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4:61–78

    Article  CAS  Google Scholar 

  32. Chen YR, Wu H, Li ZP, Wang PJ, Yang LK, Fang Y (2012) The study of surface plasmon in Au/Ag core/shell compound nanoparticles. Plasmonics 7:509–513

    Article  CAS  Google Scholar 

  33. Sonay AY, Ağlayan AB, Ulha M (2012) Synthesis of peptide mediated Au core–Ag shell nanoparticles as surface-enhanced Raman scattering labels. Plasmonics 7:77–86

    Article  CAS  Google Scholar 

  34. Liu BH, Han GM, Zhang ZP, Liu RY, Jiang CL, Wang SH, Han MY (2011) Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal Chem 84:255–261

    Article  Google Scholar 

  35. Oubre C, Nordlander P (2004) Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J Phys Chem B 108:17740–17747

    Article  CAS  Google Scholar 

  36. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano lett 4:899–903

    Article  CAS  Google Scholar 

  37. Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano lett 3:1087–1090

    Article  CAS  Google Scholar 

  38. Zhu MW, Qian GD, Ding GJ, Wang ZY, Wang MQ (2006) Plasma resonance of silver nanoparticles deposited on the surface of submicron silica spheres. Mater Chem Phys 96:489–493

    Article  CAS  Google Scholar 

  39. Lu L, Randjelovic I, Capek R, Gaponik N, Yang J, Zhang H, Eychmüller A (2005) Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy. Chem Mater 17:5731–5736

    Article  CAS  Google Scholar 

  40. Preston TC, Signorell R (2009) Growth and optical properties of gold nanoshells prior to the formation of a continuous metallic layer. Acs Nano 3:3696–3706

    Article  CAS  Google Scholar 

  41. Alessandri I, Ferroni M, Depero LE (2013) Plasmonic heating-assisted transformation of SiO2/Au core/shell nanospheres (Au nanoshells): caveats and opportunities for SERS and direct laser writing. Plasmonics 8:129–132

    Article  CAS  Google Scholar 

  42. Khurana P, Thatai S, Wang PJ, Lihitkar P, Zhang L, Fang Y, Kulkarni SK (2012) Speckled SiO2@Au core–shell particles as surface enhanced Raman scattering probes. Plasmonics. doi:10.1007/s11468-012-9374-0

  43. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano lett 5:1569–1574

    Article  CAS  Google Scholar 

  44. Wu DJ, Cheng Y, Liu XJ (2009) “Hot spots” induced near-field enhancements in Au nanoshell and Au nanoshell dimer. Appl Phys B 97:497–503

    Article  CAS  Google Scholar 

  45. Song W, Mao Z, Liu X, Lu Y, Li Z, Zhao B, Lu L (2012) Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging. Nanoscale 4:2333–2338

    Article  CAS  Google Scholar 

  46. Tripp RA, Dluhy RA, Zhao YP (2008) Novel nanostructures for SERS biosensing. Nano Today 3:31–37

    Article  CAS  Google Scholar 

  47. Ye J, Hutchison JA, Uji-I H, Hofkens J, Lagae L, Maes G, Borghs G, Van Dorpe P (2012) Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings. Nanoscale 4:1606–1611

    Article  CAS  Google Scholar 

  48. Li XY, Huang QJ, Petrov VI, Xie YT, Luo Q, Yu XY, Yan YJ (2005) Surface enhanced hyper Raman and surface enhanced Raman scattering from molecules adsorbed on nanoparticles-on-smooth-electrode (NOSE) substrate I. Pyridine, pyrazine and benzene. J Raman Spectrosc 36:555–573

    Article  CAS  Google Scholar 

  49. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  50. Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9:2301–2309

    Article  CAS  Google Scholar 

  51. Xu HX, Käll M (2006) Estimating SERS properties of silver–particle aggregates through generalized Mie theory. vol.103. Springer, Heidelberg

    Google Scholar 

  52. Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  Google Scholar 

  53. Du CL, Du CJ, You YM, He CJ, Luo J, Shi DN (2012) Surface-enhanced Raman scattering from individual Au nanoparticles on Au films. Plasmonics 7:475–478

    Article  CAS  Google Scholar 

  54. Mcmahon JM, Henry AI, Wustholz KL, Natan MJ, Freeman RG, Van Duyne RP, Schatz GC (2009) Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394:1819–1825

    Article  CAS  Google Scholar 

  55. Rodríguez-Fernández J, Pérez-Juste J, García De Abajo FJ, Liz-Marzán LM (2006) Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 22:7007–7010

    Article  Google Scholar 

  56. Beversluis MR, Bouhelier A, Novotny L (2003) Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys Rev B 68:115433–115442

    Article  Google Scholar 

  57. Baia L, Baia M, Popp J, Astilean S (2006) Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J Phys Chem B 110:23982–23986

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (grant nos. 11274004, 10904171), Beijing talent support (grant no. 2011D005016000005), Beijing Nova Program (2011079), and Beijing Natural Science Foundation (grant no. 1122012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhipeng Li or Yan Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6059 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Li, Z., Wang, P. et al. Optical Properties of Noncontinuous Gold Shell Engineered on Silica Mesosphere. Plasmonics 9, 121–127 (2014). https://doi.org/10.1007/s11468-013-9604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9604-0

Keywords

Navigation